Patents by Inventor Harold Walder

Harold Walder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170157418
    Abstract: A system for treating a diseased site in a human or animal body. The system includes a pharmaceutical carrier including one or more phosphors which are capable of emitting light into the diseased site upon interaction, a photoactivatable drug for intercalating into DNA of cells at the diseased site, one or more devices which infuse the diseased sited with the photoactivatable drug and the pharmaceutical carrier, an x-ray or high energy electron source, and a processor programmed to control a dose of x-rays or electrons to the diseased site for production of light inside the tumor to activate the photoactivatable drug.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Mark OLDHAM, Zakaryae FATHI, Wayne F. BEYER, Harold WALDER, Frederic A. BOURKE, JR., Mark DEWHIRST, Neil L. SPECTOR, Paul YOON, Justus ADAMSON, David ALCORTA, Kim LYERLY, Leihua LIU, Takuya OSADA
  • Publication number: 20170162537
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 8, 2017
    Applicant: Immunolight, LLC
    Inventors: Zakaryae FATHI, James CLAYTON, Harold WALDER, Frederic A. BOURKE, JR.
  • Publication number: 20170154866
    Abstract: A method of and system for adhesive bonding. The method and system a) treat a surface of an element to be bonded to provide an adherent structure including one or more rubber compounds on the surface; b) place a polymerizable adhesive composition, including at least one photoinitiator and at least one energy converting material, in contact with the adherent structure and two or more components to be bonded to form an assembly, c) irradiated the assembly with radiation at a first wavelength, capable of conversion by the at least one energy converting material, to a second wavelength capable of activating the at least one photoinitiator to produce from the polymerizable adhesive composition a cured adhesive composition; and d) adhesively join the two or more components by way of the adherent structure and the cured adhesive composition.
    Type: Application
    Filed: June 29, 2015
    Publication date: June 1, 2017
    Applicant: IMMUNOLIGHT, LLC
    Inventors: Zakaryae FATHI, Frederic A. BOURKE, Harold WALDER
  • Patent number: 9649832
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: May 16, 2017
    Assignees: Immunolight, LLC, Duke University
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, Jr., Ian Stanton, Jennifer Ayres, Joshua T. Stecher, Michael Therien, Eric Toone, Dave Gooden, Mark Dewhirst, Joseph A. Herbert, Diane Fels, Katherine S. Hansen
  • Publication number: 20170113061
    Abstract: Psoralen compounds of compounds having formulae 1A-10A, 1B-10B, 1C-10C, 1D-10D, 1E-10E, 1F-10F, 1G-10G, and 1H-5H as shown in FIG. 1, and pharmaceutically acceptable salts thereof; and their use in methods for the treatment of a cell proliferation disorder in a subject, pharmaceutical compositions containing the psoralen derivatives, a kit for performing the method, and a method for causing an auto vaccine effect in a subject using the method.
    Type: Application
    Filed: June 18, 2015
    Publication date: April 27, 2017
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Eric J. TOONE, David GOODEN, Frederic A. BOURKE, JR., Harold WALDER
  • Publication number: 20170096585
    Abstract: A method of and system for adhesive bonding. The method and system a) treat a surface of an element to be bonded to provide an adherent structure including one or more rubber compounds on the surface; b) place a polymerizable adhesive composition, including at least one photoinitiator and at least one energy converting material, in contact with the adherent structure and two or more components to be bonded to form an assembly, c) irradiated the assembly with radiation at a first wavelength, capable of conversion by the at least one energy converting material, to a second wavelength capable of activating the at least one photoinitiator to produce from the polymerizable adhesive composition a cured adhesive composition; and d) adhesively join the two or more components by way of the adherent structure and the cured adhesive composition.
    Type: Application
    Filed: March 18, 2015
    Publication date: April 6, 2017
    Applicant: IMMUNOLIGHT, LLC
    Inventors: Zakaryae FATHI, Frederic Avery BOURKE, Harold WALDER
  • Publication number: 20170050046
    Abstract: A system and method for imaging or treating a disease in a human or animal body. The system provides to the human or animal body a pharmaceutical carrier including one or more phosphors which are capable of emitting ultraviolet or visible light into the body and which provide x-ray contrast. The system includes one or more devices which infuse a diseased site with a photo-activatable drug and the pharmaceutical carrier, an initiation energy source comprising an x-ray or high energy source which irradiates the diseased site with at least one of x-rays, gamma rays, or electrons to thereby initiate emission of said ultraviolet or visible light into the body, and a processor programmed to at least one of 1) produce images of the diseased site or 2) control a dose of said x-rays, gamma rays, or electrons to the diseased site for production of said ultraviolet or visible light at the diseased site to activate the photoactivatable drug.
    Type: Application
    Filed: April 22, 2015
    Publication date: February 23, 2017
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY, NORTH CAROLINA STATE UNIVERSITY
    Inventors: Harold WALDER, Frederic A. BOURKE, Zakaryae FATHI, Wayne F. BEYER, Mark W. DEWHIRST, Mark OLDHAM, Justus ADAMSON, Michael NOLAN
  • Publication number: 20170043178
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: August 25, 2016
    Publication date: February 16, 2017
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Publication number: 20170027197
    Abstract: A method and a system for producing a change in a medium. The method places in a vicinity of the medium an energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The energy modulation agent has a normal predominant emission of radiation in a first wavelength range outside of a second wavelength range (WR2) known to produce the change, but under exposure to the applied initiation energy produces the change. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Applicant: IMMUNOLIGHT, LLC.
    Inventors: FREDERIC AVERY BOURKE, JR., ZAKARYAE FATHI, HAROLD WALDER, WAYNE F. BEYER, JR.
  • Patent number: 9526913
    Abstract: A nanoparticle-based system for enhancement of emitted light inside a medium. The nanoparticle-based system includes a phosphorescent material which, upon activation, produces the emitted light, and a metallic structure attached to the phosphorescent material. The metallic structure has a surface plasmon resonance which resonates at a frequency which spectrally overlaps with one or more frequencies of the emitted light.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: December 27, 2016
    Assignees: DUKE UNIVERSITY, IMMUNOLIGHT, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 9526914
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 27, 2016
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20160331731
    Abstract: Methods for the treatment of a cell proliferation disease or disorder in a subject, involving applying a psoralen derivative lacking a DNA cross-linking motif to cancer cells, applying a psoralen or a derivative thereof and lapatinib, or applying a psoralen or derivative thereof and neratinib, to a subject and further applying initiation radiation energy form an energy source.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Wenle XIA, David Gooden, Erik J. Soderblom, Eric J. Toone, Neil L. Spector, Wayne F. Beyer, JR., Harold Walder
  • Publication number: 20160325111
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by application of an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The methods may further be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 10, 2016
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Frederic A. BOURKE, JR., Tuan VO-DINH, Harold WALDER
  • Patent number: 9488916
    Abstract: A method and a system for producing a change in a medium. The method places in a vicinity of the medium an energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The energy modulation agent has a normal predominant emission of radiation in a first wavelength range outside of a second wavelength range (WR2) known to produce the change, but under exposure to the applied initiation energy produces the change. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 8, 2016
    Assignee: IMMUNOLIGHT, LLC.
    Inventors: Frederic Avery Bourke, Jr., Zakaryae Fathi, Harold Walder, Wayne F. Beyer, Jr.
  • Publication number: 20160263393
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: February 17, 2016
    Publication date: September 15, 2016
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Patent number: 9439897
    Abstract: Methods for the treatment of a cell proliferation disease or disorder in a subject, involving applying a psoralen derivative lacking a DNA cross-linking motif to cancer cells, applying a psoralen or a derivative thereof and lapatinib, or applying a psoralen or derivative thereof and neratinib, to a subject and further applying initiation radiation energy form an energy source.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 13, 2016
    Assignees: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Wenle Xia, David Gooden, Erik J. Soderblom, Eric J. Toone, Neil L. Spector, Wayne F. Beyer, Jr., Harold Walder
  • Patent number: 9302116
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 5, 2016
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian N. Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20150251016
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Publication number: 20150246521
    Abstract: A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
    Type: Application
    Filed: January 9, 2015
    Publication date: September 3, 2015
    Applicants: lmmunolight, LLC, Duke University
    Inventors: Zakaryae FATHI, James CLAYTON, Harold WALDER, Frederic A. BOURKE, JR., Ian STANTON, Jennifer AYRES, Joshua T. STECHER, Michael THERIEN, Eric TOONE, Dave GOODEN, Mark DEWHIRST, Joseph A. HERBERT, Diane FELS, Katherine S. HANSEN
  • Publication number: 20150202294
    Abstract: Methods for the treatment of a cell proliferation disease or disorder in a subject, involving applying a psoralen derivative lacking a DNA cross-linking motif to cancer cells, applying a psoralen or a derivative thereof and lapatinib, or applying a psoralen or derivative thereof and neratinib, to a subject and further applying initiation radiation energy form an energy source.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 23, 2015
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Wenle XIA, David GOODEN, Erik J. SODERBLOM, Eric J. TOONE, Neil L. SPECTOR, Wayne F. BEYER, JR., Harold WALDER