Patents by Inventor Hee-Yoon Lee

Hee-Yoon Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220214548
    Abstract: A pupil-replicating waveguide includes a high-index substrate and a low-index substrate coupled by an intermediate layer between the substrates. The refractive index of the intermediate layer is lower than the refractive index of the low-index substrate. The intermediate layer prevents highly oblique rays of image light from entering the low-index substrate, thereby reducing intensity drops in the field of view conveyed by the pupil-replicating waveguide, the intensity drops caused by insufficient replication of the highly oblique rays in the low-index substrate.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 7, 2022
    Inventors: Siddharth Buddhiraju, Hee Yoon Lee, Pasi Saarikko
  • Patent number: 11327438
    Abstract: Techniques disclosed herein relate to modifying refractive index modulation in a holographic optical element, such as a holographic grating. According to certain embodiments, a holographic optical element or apodized grating includes a polymer layer comprising a first region characterized by a first refractive index and a second region characterized by a second refractive index. The holographic optical element or apodized grating includes a plurality of nanoparticles dispersed in the polymer layer. The nanoparticles have a higher concentration in either the first region or the second region. In some embodiments, the nanoparticles may be configured to increase the refractive index modulation. In some embodiments, the nanoparticles may be configured to apodize the grating by decreasing the refractive index modulation proximate to sides of the grating. The refractive index may be modulated by applying a monomer reservoir buffer layer to the polymer layer, either before or after hologram fabrication.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: May 10, 2022
    Assignee: Facebook Technologies, LLC
    Inventors: Matthieu Charles Raoul Leibovici, Austin Lane, Wanli Chi, Hee Yoon Lee
  • Publication number: 20220137410
    Abstract: A waveguide display includes a substrate transparent to visible light, a first grating on the substrate and configured to couple display light into or out of the substrate, and a phase structure on the substrate and configured to change a polarization state of the display light after or before the display light reaches the first grating. The first grating is characterized by a polarization-dependent diffraction efficiency. The first grating includes, for example, a surface-relief grating or a volume Bragg grating.
    Type: Application
    Filed: September 17, 2021
    Publication date: May 5, 2022
    Inventors: Wai Sze Tiffany LAM, Hee Yoon LEE, Ningfeng HUANG
  • Patent number: 11281160
    Abstract: A system for making a holographic medium for use in generating light patterns for eye tracking includes a light source configured to provide light and a beam splitter configured to separate the light into a first portion of the light and a second portion of the light that is spatially separated from the first portion of the light. The system also includes a first set of optical elements configured to transmit the first portion of the light for providing a first wide-field beam onto an optically recordable medium and a plurality of optical fibers configured to receive the second portion of the light and project a plurality of separate light patterns onto the optically recordable medium for forming the holographic medium.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 22, 2022
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Ganghun Kim, Andrew Maimone, Alexander Jobe Fix, Robert Dale Cavin, Hee Yoon Lee, Matthieu Charles Raoul Leibovici, Brian Wheelwright, Douglas Robert Lanman
  • Patent number: 11256213
    Abstract: A system for making a holographic medium for use in generating light patterns for eye tracking includes a light source configured to provide light and a beam splitter configured to separate the light into a first portion of the light and a second portion of the light that is spatially separated from the first portion of the light. The system also includes a first set of optical elements configured to transmit the first portion of the light for providing a first wide-field beam onto an optically recordable medium, a second set of optical elements configured to transmit the second portion of the light for providing a second wide-field beam, and a plurality of parabolic reflectors optically coupled with the second set of optical elements and configured to receive the second wide-field beam and project a plurality of separate light patterns onto the optically recordable medium for forming the holographic medium.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 22, 2022
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Ganghun Kim, Andrew Maimone, Alexander Jobe Fix, Robert Dale Cavin, Hee Yoon Lee, Matthieu Charles Raoul Leibovici, Brian Wheelwright, Douglas Robert Lanman
  • Patent number: 11231579
    Abstract: A waveguide assembly is provided. The waveguide assembly includes a pair of pupil-replicating waveguides. The first pupil-replicating waveguide is configured for receiving an input beam of image light and providing an intermediate beam comprising multiple offset portions of the input beam. The second pupil-replicating waveguide is configured for receiving the intermediate beam from the first pupil-replicating waveguide and providing an output beam comprising multiple offset portions of the intermediate beam. The input beam may be expanded by the waveguide assembly in such a manner that pupil gaps are reduced or eliminated.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 25, 2022
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Giuseppe Calafiore, Ningfeng Huang, Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Gerard Franck Olivier, David Massoubre
  • Patent number: 11175447
    Abstract: An optical system includes an optical waveguide, a micro light emitting diode (micro-LED) configured to emit at least partially polarized light, and a waveguide coupler configured to couple the at least partially polarized light from the micro-LED into the optical waveguide with a coupling efficiency higher than a coupling efficiency of the waveguide coupler for unpolarized light. The micro-LED includes a substrate including a hexagonal lattice and having a first surface parallel to a semi-polar plane of the hexagonal lattice, and a plurality of layers grown on the first surface. The plurality of layers includes an active layer that includes a III-nitride material and has a top surface parallel to the semi-polar plane and the first surface of the substrate, such that the light emitted by the micro-LED is at least partially polarized and can be more efficiently coupled into the optical waveguide.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: November 16, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Christopher Pynn, Anneli Munkholm, Hee Yoon Lee
  • Publication number: 20210341654
    Abstract: A pupil replication waveguide for a projector display includes a slab of transparent material for propagating display light in the slab via total internal reflection. A diffraction grating is supported by the slab. The diffraction grating includes a plurality of tapered slanted fringes in a substrate for out-coupling the display light from the slab by diffraction into a blazed diffraction order. A greater portion of the display light is out-coupled into the blazed diffraction order, and a smaller portion of the display light is out-coupled into a non-blazed diffraction order. The tapered fringes result in the duty cycle of the diffraction grating varying along the thickness direction of the diffraction grating, to facilitate suppressing the portion of the display light out-coupled into the non-blazed diffraction order.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Hee Yoon Lee, Ningfeng Huang, Pasi Saarikko, Yu Shi, Giuseppe Calafiore, Nihar Ranjan Mohanty
  • Patent number: 11143866
    Abstract: A waveguide is provided for conveying image light. The waveguide includes an input port for receiving a first beam of image light carrying an image in a wavelength band. A first diffraction grating of the waveguide includes a plurality of volume Bragg gratings (VBGs) configured to expand the first beam along a first axis and to redirect the first beam towards a second diffraction grating of the waveguide. The second diffraction grating includes a plurality of VBGs configured to receive the first beam from the first diffraction grating and to out-couple different portions of the first wavelength band of the first beam along a second axis, thereby expanding the first beam along the second axis for observation of the image by a user.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: October 12, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Wanli Chi, Hee Yoon Lee, Pasi Saarikko
  • Patent number: 11114002
    Abstract: A waveguide display includes a source assembly, an output waveguide, and a controller. The source assembly includes a light source and an optics system. The light source includes source elements arranged in a 1D or 2D array that emit image light. The optics system includes a scanning mirror assembly that scans the image light to particular locations based on scanning instructions. The output waveguide receives the scanned image light from the scanning mirror assembly and outputs an expanded image light. In some embodiments, the waveguide display includes a source waveguide and the 1D array of source elements. The source waveguide receives a conditioned image light from the source assembly. The controller generates the scanning instructions and provides the scanning instructions to the scanning mirror assembly. In some embodiments, the controller provides the scanning instructions to an actuator assembly of the source waveguide.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 7, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Wanli Chi, Pasi Saarikko, Hee Yoon Lee
  • Patent number: 11099309
    Abstract: A pupil replication waveguide for a projector display includes a slab of transparent material for propagating display light in the slab via total internal reflection. A diffraction grating is supported by the slab. The diffraction grating includes a plurality of tapered slanted fringes in a substrate for out-coupling the display light from the slab by diffraction into a blazed diffraction order. A greater portion of the display light is out-coupled into the blazed diffraction order, and a smaller portion of the display light is out-coupled into a non-blazed diffraction order. The tapered fringes result in the duty cycle of the diffraction grating varying along the thickness direction of the diffraction grating, to facilitate suppressing the portion of the display light out-coupled into the non-blazed diffraction order.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 24, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Hee Yoon Lee, Ningfeng Huang, Pasi Saarikko, Yu Shi, Giuseppe Calafiore, Nihar Ranjan Mohanty
  • Patent number: 11067811
    Abstract: A waveguide display includes a substrate transparent to visible light, a coupler configured to couple display light into the substrate such that the display light propagates within the substrate through total internal reflection, a first multiplexed volume Bragg grating (VBG) on the substrate, and a second multiplexed VBG on the substrate. The second multiplexed VBG overlaps with the first multiplexed VBG in at least a see-through region of the waveguide display. The first multiplexed VBG is configured to diffract the display light to two or more regions of the second multiplexed VBG, and the second multiplexed VBG is configured to diffract the display light to two or more regions of an eyebox of the waveguide display.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: July 20, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Wanli Chi, Hee Yoon Lee, Pasi Saarikko
  • Publication number: 20210214324
    Abstract: The present disclosure provides a novel biphenyl derivative compound or a pharmaceutically acceptable salt thereof. The biphenyl derivative compound or pharmaceutically acceptable salt thereof according to the present disclosure is a compound that increases Nm23-H1/NDPK activity and can inhibit cancer metastasis and growth. Thus, it exhibits excellent effects not only on the prevention, alleviation and treatment of cancer, but also on the suppression of cancer metastasis.
    Type: Application
    Filed: May 30, 2019
    Publication date: July 15, 2021
    Inventors: Kong Joo Lee, Hee-Yoon Lee, Je Jin Lee, Hwang Suk Kim, Ji-wan Seo, Hongsoo Lee, Ji Soo Shin, Bo-kyung Kim
  • Publication number: 20210206706
    Abstract: The present disclosure provides a novel biphenyl derivative compound, an optical isomer thereof or a pharmaceutically acceptable salt thereof. The biphenyl derivative compound, optical isomer thereof or pharmaceutically acceptable salt thereof according to the present disclosure may induce cancer cell death by damaging mitochondria and inducing ATP depletion in cells which are in a nutrient-starved state such as a glucose-starved state, which is the normal environment of cancer cells. In addition, it is an Nm23-H1/NDPK activity-increasing substance that may suppress cancer metastasis and growth. Thus, it exhibits excellent effects not only on the prevention, alleviation and treatment of cancer, but also on the suppression of cancer metastasis.
    Type: Application
    Filed: May 30, 2019
    Publication date: July 8, 2021
    Inventors: Kong Joo Lee, Hee-Yoon Lee, Je Jin Lee, Hongsoo Lee, Ji-wan Seo, Hwang Suk Kim, Bo-kyung Kim, Ji Soo Shin
  • Patent number: 11054566
    Abstract: A display waveguide configured for conveying polychromatic image light to a viewer includes a substrate and a higher-index layer supported by the substrate. The high-index layer supports the transmission of the longer-wavelength color channel of the image light in at least a portion of the field of view.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 6, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventor: Hee Yoon Lee
  • Publication number: 20210199971
    Abstract: A waveguide display includes a waveguide, an input coupler configured to couple display light into the waveguide, and a surface-relief grating on the waveguide and configured to couple the display light out of the waveguide towards an eyebox of the waveguide display on a first side of the waveguide. The surface-relief grating is formed in a plurality of grating layers having uniform or non-uniform thickness profiles. The plurality of grating layers is characterized by a refractive index modulation that increases and then decreases as the distance of the grating layer from the waveguide increases.
    Type: Application
    Filed: December 17, 2020
    Publication date: July 1, 2021
    Inventors: Hee Yoon LEE, Yu SHI, Elliott FRANKE
  • Publication number: 20210199873
    Abstract: A waveguide display includes a first substrate having two opposing sides, a grating on a first side of the two opposing sides of the first substrate and configured to couple display light into or out of the first substrate, a first antireflection layer on a first surface of the grating and configured to reduce reflection of visible light at the first surface of the grating, and a second antireflection layer on a second side of the two opposing sides of the first substrate and configured to reduce reflection of the visible light at the second side of the first substrate.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Inventors: Yu SHI, Hee Yoon LEE, Ningfeng HUANG, Giuseppe CALAFIORE, Pasi SAARIKKO
  • Publication number: 20210173234
    Abstract: A diffraction grating includes a substrate and a plurality of fringes supported by the substrate. The fringes run parallel to each other in a first direction. A refractive index of a material of the plurality of fringes is anisotropic, whereby a refractive index contrast of the diffraction grating depends on direction of electric field of an impinging light beam, and through that dependence is a function of an azimuthal angle of the impinging light beam. A dependence of the diffraction efficiency on the azimuthal angle is affected by the dependence of the refractive index contrast on the direction of electric field of an impinging light beam. A pupil-replicating waveguide may use such a diffraction grating as a coupler for in- our out-coupling image light.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Inventors: Siddharth Buddhiraju, Yu Shi, Ningfeng Huang, Hee Yoon Lee, Pasi Saarikko
  • Publication number: 20210141130
    Abstract: A waveguide display includes an image light source for emitting polychromatic image light, and a waveguide of high-index material for transmitting polychromatic image light to an eyebox. The waveguide has an input grating and an offset output grating. The output grating is configured so that ambient light diffracted by the output grating is directed away from the eyebox or out of at least a central portion of the field of view so as to lessen the appearance of visual artifacts.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Hee Yoon Lee, Pasi Saarikko
  • Publication number: 20210124108
    Abstract: A display waveguide configured for conveying polychromatic image light to a viewer includes a substrate and a higher-index layer supported by the substrate. The high-index layer supports the transmission of the longer-wavelength color channel of the image light in at least a portion of the field of view.
    Type: Application
    Filed: January 10, 2020
    Publication date: April 29, 2021
    Inventor: Hee Yoon Lee