Patents by Inventor Heinz Lindenmeier

Heinz Lindenmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140285387
    Abstract: The invention relates to a vertical broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap—the lower band for the lower frequencies and the upper band for the higher frequencies—both lying in the decimeter wavelength spectrum, and for transmitting and/or receiving using terrestrially broadcast, vertically polarized radio signals over a substantially horizontal conductive base surface adapted as a vehicle ground, having an antenna connection site located in the monopole nadir. The broadband monopole antenna is formed in combined form from an upper band monopole and a lower band monopole and from an electrically conductive planar structure above a conductive base surface substantially designed extending in a plane oriented perpendicular thereto.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 25, 2014
    Inventors: STEFAN LINDENMEIER, HEINZ LINDENMEIER, JOCHEN HOPF, LEOPOLD REITER
  • Patent number: 8643556
    Abstract: Aerial for the reception of circularly polarized satellite radio signals comprising at least one substantially horizontally oriented conductor loop arranged over a conductive base surface, having an assembly for electromagnetic excitation of the conductor loop connected to an aerial connection. The conductor loop is designed as a loop emitter by a polygonal or circularly closed loop extending in a horizontal plane of height h above the conductive base surface. The loop emitter forms a resonant structure and is electrically excited by the electromagnetic exciter in such a way that on the loop the current distribution of a travelling line wave occurs in one direction of rotation only, of which the phase difference over one revolution is M*2?, where M is an integer and has at least a value of M=2.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Publication number: 20140028512
    Abstract: An electric emitter for vertically polarised wireless signals for a communication service with a narrow frequency bandwidth around a frequency fo with free-space wavelength ?o in the gigahertz range, comprising at least one substantially horizontally oriented conductor loop arranged above a conductive base area, with an emitter infeed point for electromagnetic excitation of the loop relative to the base area. The loop is formed by a circularly closed ring conductor running in a substantially horizontal plane with a height h of less than ?o/6 over the base area. Distributed over the periphery of the ring conductor are at least three vertical emitters electromagnetically coupled to the ring conductor coupling points and running to the base area, wherein at least two of the emitters are electromagnetically coupled to the base area at earth terminal points, and a vertical emitter is excited via the emitter infeed point at the lower end thereof.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 30, 2014
    Inventors: STEFAN LINDENMEIER, HEINZ LINDENMEIER, JOCHEN HOPF, LEOPOLD REITER
  • Publication number: 20140002319
    Abstract: A multiband reception antenna enables the combined reception of circularly polarized satellite radio signals from at least one satellite radio service which emits with circular polarization and of terrestrially emitted radio signals. The multiband reception antenna comprises at least one satellite reception antenna with a ring line emitter and a plurality of vertical emitters are connected to the ring line emitter over the circumference of the ring line emitter. Furthermore, a monopole is provided, with a monopole connection point formed at the lower end thereof.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 2, 2014
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Leopold Reiter, Jochen Hopf
  • Patent number: 8610631
    Abstract: An antenna rod for a rod antenna arrangement on a vehicle body, which serves as the ground of the rod antenna arrangement, for electromechanical connection with the electromechanical base connector of a low plastic base part. This base connector is affixed to the vehicle body which part contains the further antenna circuit that is connected to the electromechanical base connector. The antenna rod contains a plastic rod to which an antenna coil is applied. At the lower end of the plastic rod and parallel to its rod axis, an extended electrically conductive element is guided as a coupling conductor, for electromagnetic coupling to the antenna coil, with an overlap of multiple but at least two windings of the antenna coil. The coupling conductor is galvanically separated from the antenna coil by means of a low-loss insulator, to create capacitive coupling to the antenna coil. The coupling conductor, the low-loss insulator, and the antenna rod are connected with one another in mechanically firm manner.
    Type: Grant
    Filed: August 15, 2010
    Date of Patent: December 17, 2013
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Leopold Reiter, Jochen Hopf
  • Patent number: 8599083
    Abstract: An antenna for receiving circularly polarized satellite radio signals has a conductive base surface and at least one a conductor loop oriented horizontally above the base surface by a height h. The conductor loop is configured as a polygonal or circular closed ring line radiator The ring line radiator forms a resonant structure that is electrically excited so that the current distribution of a running line wave in a single rotation direction occurs on the ring line, wherein the phase difference of which, over one revolution, amounts to essentially 2?. A vertical radiator extends between the conductive base surface and the circumference of the ring line radiator. The height h is smaller than ? of the free-space wavelength ?.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 3, 2013
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Publication number: 20130257678
    Abstract: An antenna for receiving circularly polarized satellite radio signals has a conductive base surface and at least one a conductor loop oriented horizontally above the base surface by a height h. The conductor loop is configured as a polygonal or circular closed ring line radiator. The ring line radiator forms a resonant structure that is electrically excited so that the current distribution of a running line wave in a single rotation direction occurs on the ring line, wherein the phase difference of which, over one revolution, amounts to essentially 2?. A vertical radiator extends between the conductive base surface and the circumference of the ring line radiator. The height h is smaller than ? of the free-space wavelength ?.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: DELPHI DEUTSCHLAND GMBH
    Inventors: STEFAN LINDENMEIER, HEINZ LINDENMEIER, JOCHEN HOPF, LEOPOLD REITER
  • Patent number: 8537063
    Abstract: An antenna for reception of satellite radio signals emitted circularly in the direction of rotation of polarization has a conductive base surface, an antenna connection point, an antenna element connection point and at least two antenna elements. The first antenna is a conductor loop disposed parallel to the base surface. The loop antenna has capacitors disposed along the conductor loop. The antenna connection point is coupled to an interruption of the loop antenna. This connection point feeds a ring current into the loop antenna. At least one additional antenna element extends between the antenna element connection point and the loop antenna. The additional antenna element has a polarization orientated perpendicular to the polarization of the loop antenna and an orthogonal phase in the far field.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 17, 2013
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Patent number: 8422976
    Abstract: There is disclosed an antenna diversity system for relatively broadband broadcast reception in vehicles such as motor vehicles. The device can include a diversity processor having numerous components including a microprocessor for controlling a signal selection switch. In alternative embodiments the processor can be incorporated into a receiver or into a multi-antenna system. One advantage of these designs is that it is able to exist with one reception tuner and being able to select one signal from a plurality of antenna signals A1, A2, . . . AN, with great probability, whose signal components lie above the level necessary for interference-free reception, over the entire channel bandwidth B.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: April 16, 2013
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Heinz Lindenmeier, Stefan Lindenmeier, Jochen Hopf, Leopold Reiter
  • Patent number: 8334814
    Abstract: An antenna for circular polarization having an electrical dipole radiator which is oriented essentially parallel to an electrically conductive base surface in a plane of symmetry SE oriented perpendicular to the electrically conductive base surface. The dipole is in connection with a slot radiator which is configured in an electrically conductive base surface, with its longitudinal expanse along the intersection line between the plane of symmetry SE and the electrically conductive base surface. The slot radiator connection location is formed by means of connection points situated at the longitudinal edges and lying opposite one another. The electrical dipole radiator and the slot radiator are tuned to one another in their resonance frequencies.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 18, 2012
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Patent number: 8306168
    Abstract: A diversity antenna system and method comprising a plurality of antennas, a plurality of switches and a plurality of phase shifters, wherein the switches and the antennas are selectively opened and closed or switched on an off to achieve equiphasing. This system separates the noise signal from the useful signal in order to achieve a proper determination of the different phases. In addition there is a receiver which is configured to receive the output of the diversity system. The logic control unit is configured to perform particular steps or algorithms in order to achieve equiphasing of the received signals.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: November 6, 2012
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Patent number: 8270924
    Abstract: There is an antenna diversity system for radio reception in moving vehicles which includes a receiver, and at least two antennas coupled to the receiver. These antennas transmit antenna feed signals to an antenna diversity module coupled between the receiver and the antennas. In at least one embodiment, the antenna diversity module comprises at least one evaluation circuit for evaluating an interference in a reception signal, and at least one processor for adjusting a magnitude and a phase angle of a linear combination of the antenna feed signals. The evaluation circuit reads and sends an interference indication signal to the processor to create a relatively low interference signal. Thus, the diversity module combines the antenna feed signals in an adjustable manner based on an magnitude of phase angle, to form a linear combined signal that is present at the output of the antenna diversity module as a reception signal.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 18, 2012
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Heinz Lindenmeier, Stefan Lindenmeier, Jochen Hopf, Leopold Reiter
  • Publication number: 20120223787
    Abstract: A high-frequency phase shifter 1 for varying the phase between its high-frequency input signal and its output signal by the transmission phase ?, consisting of a two-port network 2 which is symmetrical in relation to input and output and which with respect to its high-frequency properties consists of three two-terminal networks 5 consisting of low-loss reactances 8, wherein at least one of the two-terminal networks 5 is arranged in a series circuit as a two-terminal network 6 in series with one of the connecting ports 23 and at least one of the two-terminal networks 5 is arranged in a parallel circuit as a two-terminal network 7 in parallel with the two-port earth 9, so that a symmetrical T-circuit 24 or a symmetrical ? circuit 25 is provided.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: DELPHI DEUTSCHLAND GMBH
    Inventors: STEFAN LINDENMEIER, HEINZ LINDENMEIER, LEOPOLD REITER, JOCHEN HOPF
  • Publication number: 20120050120
    Abstract: Aerial for the reception of circularly polarised satellite radio signals comprising at least one substantially horizontally oriented conductor loop arranged over a conductive base surface, having an assembly for electromagnetic excitation of the conductor loop connected to an aerial connection. The conductor loop is designed as a loop emitter by a polygonal or circularly closed loop extending in a horizontal plane of height h above the conductive base surface. The loop emitter forms a resonant structure and is electrically excited by the electromagnetic exciter in such a way that on the loop the current distribution of a travelling line wave occurs in one direction of rotation only, of which the phase difference over one revolution is M*2?, where M is an integer and has at least a value of M=2.
    Type: Application
    Filed: April 21, 2011
    Publication date: March 1, 2012
    Applicant: DELPHI DELCO ELECTRONICS EUROPE GMBH
    Inventors: STEFAN LINDENMEIER, HEINZ LINDENMEIER, JOCHEN HOPF, LEOPOLD REITER
  • Patent number: 8107557
    Abstract: A diversity processing system for providing interference masking signals in an interference suppression circuit. These interference masking signals are generated by an interference detector which through a coupling element couples in a signature signal into a reception signal. This reception signal is then passed to an amplifier, an optional frequency converter, an IF filter, a frequency demodulator and then on to an interference suppression circuit which provides a masking pulse to mask any distortion or interference associated with the diversity switching of antennas during operation.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 31, 2012
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Heinz Lindenmeier, Stefan Lindenmeier, Jochen Hopf, Leopold Reiter
  • Publication number: 20110215978
    Abstract: An antenna receiving circularly polarized satellite radio signals has a conductive base surface and a conductor loop oriented horizontally above the base. The loop is configured as a ring line radiator, incorporating a polygonal or circular closed ring line, in a horizontal plane above the conductive base surface. The conductor loop is electromagnetically excited by a device including an antenna connector. The ring line radiator forms a resonance structure that is electromagnetically excited, whereby the current distribution of a running line wave in a single rotation direction occurs on the ring line. At least one vertical radiator extends toward the conductive base surface and is disposed on the ring line radiator, wherein the vertical radiator is electromagnetically coupled both with the ring line radiator and the electrically conductive base surface, to support the vertically oriented component of the electromagnetic field.
    Type: Application
    Filed: September 2, 2010
    Publication date: September 8, 2011
    Applicant: DELPHI DELCO ELECTRONICS EUROPE GMBH
    Inventors: Stefan LINDENMEIER, Heinz LINDENMEIER, Jochen HOPF, Leopold REITER
  • Publication number: 20110193755
    Abstract: An antenna rod for a rod antenna arrangement on a vehicle body, which serves as the ground of the rod antenna arrangement, for electromechanical connection with the electromechanical base connector of a low plastic base part. This base connector is affixed to the vehicle body which part contains the further antenna circuit that is connected to the electromechanical base connector. The antenna rod contains a plastic rod to which an antenna coil is applied. At the lower end of the plastic rod and parallel to its rod axis, an extended electrically conductive element is guided as a coupling conductor, for electromagnetic coupling to the antenna coil, with an overlap of multiple but at least two windings of the antenna coil. The coupling conductor is galvanically separated from the antenna coil by means of a low-loss insulator, to create capacitive coupling to the antenna coil. The coupling conductor, the low-loss insulator, and the antenna rod are connected with one another in mechanically firm manner.
    Type: Application
    Filed: August 15, 2010
    Publication date: August 11, 2011
    Applicant: DELPHI DELCO ELECTRONICS EUROPE GMBH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Leopold Reiter, Jochen Hopf
  • Patent number: 7936309
    Abstract: There is disclosed an antenna for reception of circularly polarized satellite radio signals. The antenna comprises at least one two-dimensional or three-dimensional antenna conductor structure connected with an antenna output connector. The multi-dimensional antenna conductor structure is configured so that it comprises a plurality of antenna conductor sections, which, with reference to a spatial reference point (z) common to the antenna conductor sections, are disposed in pairs, symmetrically and extending in the same direction.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: May 3, 2011
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventors: Stefan Lindenmeier, Heinz Lindenmeier, Jochen Hopf, Leopold Reiter
  • Patent number: 7936852
    Abstract: An antenna diversity system for radio reception for motor vehicles, which comprises a multi-antenna system having several antennas with antenna feed lines. There can be a diversity switching device for selection of a different reception signal, and an evaluation circuit which evaluates the reception quality of the reception signal just arriving at the receiver. This evaluation circuit is designed to bring a different reception signal in terms of diversity to the receiver if interference occurs, by switching over. This design also includes at least one phase rotation device which is disposed along at least one of the signal paths.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: May 3, 2011
    Assignee: Delphi Delco Electronics Europe GmbH
    Inventor: Heinz Lindenmeier
  • Publication number: 20100302112
    Abstract: An antenna for circular polarization having an electrical dipole radiator which is oriented essentially parallel to an electrically conductive base surface in a plane of symmetry SE oriented perpendicular to the electrically conductive base surface. The dipole is in connection with a slot radiator which is configured in an electrically conductive base surface, with its longitudinal expanse along the intersection line between the plane of symmetry SE and the electrically conductive base surface. The slot radiator connection location is formed by means of connection points situated at the longitudinal edges and lying opposite one another. The electrical dipole radiator and the slot radiator are tuned to one another in their resonance frequencies.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Applicant: DELPHI DELCO ELECTRONICS EUROPE GMBH
    Inventors: Stefan LINDENMEIER, Heinz LINDENMEIER, Jochen HOPF, Leopold REITER