Patents by Inventor Hidekazu Hayashi

Hidekazu Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130094089
    Abstract: A mold manufacturing method of an embodiment of the present invention includes the steps of: (a) providing a mold base; (b) partially anodizing the aluminum layer to form a porous alumina layer, the porous alumina layer having a porous layer which defines a plurality of minute recessed portions and a barrier layer which is provided at a bottom of each of the plurality of minute recessed portions; and (c) after step (b), performing etching, thereby enlarging the plurality of minute recessed portions of the porous alumina layer, wherein in step (c) the etching is performed such that an average depth of the plurality of minute recessed portions increases but does not exceed a 1/7 of an average thickness of the barrier layer before the etching.
    Type: Application
    Filed: April 1, 2011
    Publication date: April 18, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Akinobu Isurugi, Kiyoshi Minoura, Hidekazu Hayashi, Kenichiro Nakamatsu
  • Publication number: 20130063725
    Abstract: A method is disclosed for inspecting a mold which has a porous alumina layer over its surface. The method includes providing, based on a relationship between a first parameter indicative of a thickness of the porous alumina layer and a color parameter indicative of a color of reflected light from the porous alumina layer, first color information which represents a tolerance of the first parameter of a porous alumina layer which has an uneven structure that is within a tolerance; providing a mold which is an inspection subject, the mold having a porous alumina layer over its surface; obtaining a color parameter which is indicative of a color of reflected light from the porous alumina layer of the inspection subject mold; and determining a suitability of the first parameter of the inspection subject mold based on the obtained color parameter and the first color information.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 14, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Hidekazu Hayashi, Takao Imaoku
  • Publication number: 20130061492
    Abstract: According to one embodiment, a supercritical drying apparatus comprises a chamber being hermetically sealable and configured to store a semiconductor substrate, a heater configured to heat an inner side of the chamber, a supply unit configured to supply carbon dioxide to the chamber, a discharge unit configured to discharge carbon dioxide from the chamber, and a rotation unit configured to rotate the chamber by an angle equal to or greater than 90 degrees and equal to or smaller than 180 degrees with respect to the horizontal direction.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 14, 2013
    Inventors: Hisashi OKUCHI, Hidekazu HAYASHI, Linan JI, Yohei SATO, Hiroshi TOMITA
  • Publication number: 20130055584
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate comprises introducing a semiconductor substrate, a surface of the semiconductor substrate being wet with a water-soluble organic solvent, to the inside of a chamber, hermetically sealing the chamber and increasing a temperature inside the chamber to not lower than a critical temperature of the water-soluble organic solvent, thereby bringing the water-soluble organic solvent into a supercritical state, decreasing a pressure inside the chamber and changing the water-soluble organic solvent in the supercritical state to a gas, thereby discharging the water-soluble organic solvent from the chamber, starting a supply of an inert gas into the chamber as the pressure inside the chamber decreases to atmospheric pressure, and cooling the semiconductor substrate in a state where the inert gas exists inside the chamber.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 7, 2013
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Linan Ji
  • Patent number: 8384862
    Abstract: A method is disclosed for efficiently producing a nanoimprint film with high-accurately formed nanostructures even if a base on which the nanoimprint film is formed is capable of absorbing UV light. The production method of at least one embodiment of the present invention is a production method of a nanoimprint film formed on a base, the nanoimprint film having a surface with nanosized protrusions and recesses formed thereon. In at least one embodiment, the production method includes a first step of applying a UV-curable resin on a base containing a UV-absorbing component to form a film; a second step of irradiating the film with UV light from a top-side surface of the film to form a semi-cured film; a third step of imprinting nanosized protrusions and recesses on the semi-cured film to form a film having a surface with protrusions and recesses formed thereon; and a fourth step of curing the film with protrusions and recesses to form a nanoimprint film.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 26, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takao Imaoku, Tokio Taguchi, Hidekazu Hayashi, Kazuhiko Tsuda
  • Patent number: 8372212
    Abstract: According to one embodiment, a supercritical drying method comprises cleaning a semiconductor substrate with a chemical solution, rinsing the semiconductor substrate with pure water after the cleaning, changing a liquid covering a surface of the semiconductor substrate from the pure water to alcohol by supplying the alcohol to the surface after the rinsing, guiding the semiconductor substrate having the surface wetted with the alcohol into a chamber, discharging oxygen from the chamber by supplying an inert gas into the chamber, putting the alcohol into a supercritical state by increasing temperature in the chamber to a critical temperature of the alcohol or higher after the discharge of the oxygen, and discharging the alcohol from the chamber by lowering pressure in the chamber and changing the alcohol from the supercritical state to a gaseous state. The chamber contains SUS. An inner wall face of the chamber is subjected to electrolytic polishing.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 12, 2013
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Publication number: 20130029197
    Abstract: One aspect according to the present invention includes a battery pack and a shock absorbing device interposed between a battery cell holder and a case body and capable of keeping the battery cell holder and the battery cells not to directly contact with an inner surface of the case body.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Inventors: Tsuyoshi MURAYAMA, Hideyuki TAGA, Kazutoshi OGINO, Hidekazu HAYASHI, Hitoshi SUZUKI
  • Publication number: 20130019905
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 24, 2013
    Inventors: Linan JI, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Publication number: 20130004612
    Abstract: One of the objects of the present invention is to provide a method for readily manufacturing a seamless mold in the form of a roll which has a porous alumina layer over its surface. The mold manufacturing method of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a hollow cylindrical support; forming an insulating layer on an outer perimeter surface of the hollow cylindrical support; depositing aluminum on the insulating layer to form an aluminum film; and anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions.
    Type: Application
    Filed: February 8, 2011
    Publication date: January 3, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Akinobu Isurugi, Kiyoshi Minoura, Hidekazu Hayashi
  • Publication number: 20120325670
    Abstract: An anodized layer formation method of an embodiment of the present invention includes the step a of providing an aluminum film which is formed on a first principal surface of a support and the step b of anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions. In the step a, a second principal surface of the support which is opposite to the first principal surface is provided with a low heat conduction member that has a predetermined pattern. According to an embodiment of the present invention, a porous alumina layer can be formed which includes regions of different minute structures in the predetermined pattern.
    Type: Application
    Filed: March 8, 2011
    Publication date: December 27, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kenichiro Nakamatsu, Hidekazu Hayashi, Kiyoshi Minoura, Akinobu Isurugi
  • Publication number: 20120318772
    Abstract: A method is provided for manufacturing a mold that has a porous alumina layer over its surface, which is capable of preventing formation of pits (recesses). A moth-eye mold manufacturing method of an embodiment of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a mold base which includes an aluminum base and an aluminum film deposited on a surface of the aluminum base, the aluminum film having a purity of not less than 99.99 mass %; anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions; and bringing the porous alumina layer into contact with an etching solution to enlarge the plurality of minute recessed portions of the porous alumina layer.
    Type: Application
    Filed: March 22, 2011
    Publication date: December 20, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kiyoshi Minoura, Akinobu Isurugi, Ichirou Ihara, Hidekazu Hayashi, Kenichiro Nakamatsu
  • Publication number: 20120304485
    Abstract: A substrate processing method and apparatus which can remove an anti-drying liquid, which has entered a three-dimensional pattern with recessed portions formed in a substrate, in a relatively short time. The substrate processing method includes the steps of: carrying a substrate, having a three-dimensional pattern formed in a surface, into a processing container, said pattern being covered with an anti-drying liquid that has entered the recessed portions of the pattern; heating the substrate and supplying a pressurizing gas or a fluid in a high-pressure state into the processing container, thereby forming a high-pressure atmosphere in the processing container before the anti-drying liquid vaporizes to such an extent as to cause pattern collapse and bringing the anti-drying liquid into a high-pressure state while keeping the liquid in the recessed portions of the pattern; and thereafter discharging a fluid in a high-pressure state or a gaseous state from the processing container.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 6, 2012
    Applicants: Tokyo Electron Limited, Kabushiki Kaisha Toshiba
    Inventors: Hidekazu Hayashi, Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Kazuyuki Mitsuoka, Mitsuaki Iwashita, Takehiko Orii, Gen You, Hiroki Ohno, Takayuki Toshima
  • Publication number: 20120308678
    Abstract: A mold release treatment method of the present invention includes: the step of providing a mold releasing agent and a mold which has a porous alumina layer over its surface, the mold releasing agent containing a fluoric compound which has mold releasability and a solvent; the step of applying over the surface of the mold a solvent that is capable of dissolving the fluoric compound; and thereafter, the step of applying the mold releasing agent over the surface of the mold according to a spray coating method. According to the present invention, a mold release treatment can be performed over a surface of the mold which has the porous alumina layer over its surface, without causing uneven application.
    Type: Application
    Filed: March 7, 2011
    Publication date: December 6, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Hidekazu Hayashi, Takao Imaoku
  • Patent number: 8294282
    Abstract: The present invention provides a semiconductor device which comprises a substrate, a first semiconductor chip on a substrate, a second semiconductor chip on the first semiconductor chip, and an adhesive sheet between the first and second semiconductor chips. The second semiconductor chip has a mirrored back surface, and the adhesive sheet contains a metal impurity ion trapping agent.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidekazu Hayashi, Hiroshi Tomita, Junya Sagara, Shinya Takyu, Norihiro Togasaki, Tetsuya Kurosawa, Yukiko Kitajima
  • Publication number: 20120247516
    Abstract: According to one embodiment, a supercritical drying method comprises cleaning a semiconductor substrate with a chemical solution, rinsing the semiconductor substrate with pure water after the cleaning, changing a liquid covering a surface of the semiconductor substrate from the pure water to alcohol by supplying the alcohol to the surface after the rinsing, guiding the semiconductor substrate having the surface wetted with the alcohol into a chamber, discharging oxygen from the chamber by supplying an inert gas into the chamber, putting the alcohol into a supercritical state by increasing temperature in the chamber to a critical temperature of the alcohol or higher after the discharge of the oxygen, and discharging the alcohol from the chamber by lowering pressure in the chamber and changing the alcohol from the supercritical state to a gaseous state. The chamber contains SUS. An inner wall face of the chamber is subjected to electrolytic polishing.
    Type: Application
    Filed: February 9, 2012
    Publication date: October 4, 2012
    Inventors: Yohei SATO, Hisashi OKUCHI, Hiroshi TOMITA, Hidekazu HAYASHI, Yukiko KITAJIMA, Takayuki TOSHIMA, Mitsuaki IWASHITA, Kazuyuki MITSUOKA, Gen YOU, Hiroki OHNO, Takehiko ORII
  • Patent number: 8278877
    Abstract: One aspect according to the present invention includes a battery pack and a shock absorbing device interposed between a battery cell holder and a case body and capable of keeping the battery cell holder and the battery cells not to directly contact with an inner surface of the case body.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: October 2, 2012
    Assignee: Makita Corporation
    Inventors: Tsuyoshi Murayama, Hideyuki Taga, Kazutoshi Ogino, Hidekazu Hayashi, Hitoshi Suzuki
  • Publication number: 20120240426
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate includes introducing a semiconductor substrate formed with a metal film into a chamber, the surface of the substrate being wet with alcohol, supplying a supercritical fluid of carbon dioxide into the chamber, setting a temperature inside the chamber to a predetermined temperature, to replace the alcohol on the semiconductor substrate with the supercritical fluid, and discharging the supercritical fluid and the alcohol from the chamber while keeping the temperature inside the chamber at the predetermined temperature, to lower a pressure inside the chamber. The predetermined temperature is not lower than 75° C. but lower than a critical temperature of the alcohol.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 27, 2012
    Inventors: Hidekazu HAYASHI, Hiroshi Tomita, Yukiko Kitajima, Hisashi Okuchi, Yohei Sato
  • Publication number: 20120208048
    Abstract: A battery includes a battery housing and a plurality of battery terminals. The battery housing has a terminal mounting portion made of resin. The battery terminals are connectible with external terminals and are mounted to the terminal mounting portion so as to extend through the terminal mounting portion, so that each of the battery terminals has a first end positioned on one side of the terminal mounting portion and a second end positioned on an opposite side of the terminal mounting portion. At least one of the battery terminals is integrated with the terminal mounting portion, so that there is no substantial clearance between the at least one of the battery terminals and a part of the terminal mounting portion, through which the at least one of the battery terminals extends.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: MAKITA CORPORATION
    Inventors: Hironori OGURA, Hideyuki TAGA, Hidekazu HAYASHI
  • Publication number: 20120186097
    Abstract: Certain embodiments provide a supercritical drying device, comprising a sealable first vessel; a fluorine adsorbent provided inside the first vessel; a second vessel being provided inside the first vessel and housing a semiconductor substrate; a heater heating the inside of the first vessel; a pipe connected to the first vessel; and a valve provided on the pipe. Free fluorine generated by heating a fluorine containing solvent is adsorbed to the fluorine adsorbent.
    Type: Application
    Filed: June 14, 2011
    Publication date: July 26, 2012
    Inventors: Hidekazu HAYASHI, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Yukiko Kitajima
  • Publication number: 20120118332
    Abstract: In one embodiment, after rinsing a semiconductor substrate having a fine pattern formed thereon with pure water, the pure water staying on the semiconductor substrate is substituted with a water soluble organic solvent, and then, the semiconductor substrate is introduced into a chamber in a state wet with the water soluble organic solvent. Then, the water soluble organic solvent is turned into a supercritical state by increasing a temperature inside of the chamber. Thereafter, the inside of the chamber is reduced in pressure while keeping the inside of the chamber at a temperature enough not to liquefy the pure water (i.e., rinsing pure water mixed into the water soluble organic solvent), and further, the water soluble organic solvent in the supercritical state is changed into a gaseous state, to be discharged from the chamber, so that the semiconductor substrate is dried.
    Type: Application
    Filed: March 21, 2011
    Publication date: May 17, 2012
    Inventors: Yohei SATO, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima