Patents by Inventor Hidekazu Miyairi

Hidekazu Miyairi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666719
    Abstract: To offer a semiconductor device including a thin film transistor having excellent characteristics and high reliability and a method for manufacturing the semiconductor device without variation. The summary is to include an inverted-staggered (bottom-gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used for a semiconductor layer and a buffer layer is provided between the semiconductor layer and source and drain electrode layers. An ohmic contact is formed by intentionally providing a buffer layer containing In, Ga, and Zn and having a higher carrier concentration than the semiconductor layer between the semiconductor layer and the source and drain electrode layers.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: May 30, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Akiharu Miyanaga, Kengo Akimoto, Kojiro Shiraishi
  • Patent number: 9653479
    Abstract: To provide a semiconductor device with excellent electrical characteristics or a semiconductor device with stable electrical characteristics. A semiconductor device includes a first transistor, a second transistor, a first insulator, a second insulator, a first wiring, and a first plug. The first transistor includes silicon. The second transistor includes an oxide semiconductor. The first insulator is located over the first transistor. The second insulator is located over the first insulator. The second transistor is located over the second insulator. The first wiring is located over the second insulator and the first plug. The first transistor and the second transistor are electrically connected to each other through the first wiring and the first plug. The first wiring has low hydrogen permeability. The hydrogen permeability of the second insulator is lower than the hydrogen permeability of the first insulator.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 16, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Yuichi Sato, Yuji Asano, Tetsunori Maruyama, Tatsuya Onuki, Shuhei Nagatsuka
  • Publication number: 20170133409
    Abstract: As a display device has higher definition, the number of pixels is increased and thus, the number of gate lines and signal lines is increased. When the number of gate lines and signal lines is increased, it is difficult to mount IC chips including driver circuits for driving the gate lines and the signal lines by bonding or the like, whereby manufacturing cost is increased. A pixel portion and a driver circuit for driving the pixel portion are provided on the same substrate, and at least part of the driver circuit comprises a thin film transistor including an oxide semiconductor sandwiched between gate electrodes. A channel protective layer is provided between the oxide semiconductor and a gate electrode provided over the oxide semiconductor. The pixel portion and the driver circuit are provided on the same substrate, which leads to reduction of manufacturing cost.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Hidekazu MIYAIRI, Takeshi OSADA, Shunpei YAMAZAKI
  • Publication number: 20170117299
    Abstract: The semiconductor device includes a first layer including a first transistor, a second layer including a first insulating film over the first layer, a third layer including a second insulating film over the second layer, and a fourth layer including a second transistor over the third layer. A first conductive film electrically connects the first transistor and the second transistor to each other through an opening provided in the first insulating film. A second conductive film electrically connects the first transistor, the second transistor, and the first conductive film to one another through an opening provided in the second insulating film. A channel formation region of the first transistor includes a single crystal semiconductor. A channel formation region of the second transistor includes an oxide semiconductor. The width of a bottom surface of the second conductive film is 5 nm or less.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 27, 2017
    Inventors: Motomu KURATA, Shinya SASAGAWA, Ryota HODO, Katsuaki TOCHIBAYASHI, Tomoaki MORIWAKA, Jiro NISHIDA, Hidekazu MIYAIRI, Shunpei YAMAZAKI
  • Patent number: 9601603
    Abstract: As a display device has a higher definition, the number of pixels, gate lines, and signal lines are increased. When the number of the gate lines and the signal lines are increased, a problem of higher manufacturing cost, because it is difficult to mount an IC chip including a driver circuit for driving of the gate and signal lines by bonding or the like. A pixel portion and a driver circuit for driving the pixel portion are provided over the same substrate, and at least part of the driver circuit includes a thin film transistor using an oxide semiconductor interposed between gate electrodes provided above and below the oxide semiconductor. Therefore, when the pixel portion and the driver portion are provided over the same substrate, manufacturing cost can be reduced.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: March 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Takeshi Osada, Shunpei Yamazaki
  • Patent number: 9590109
    Abstract: A semiconductor device that operates at high speed. A semiconductor device with favorable switching characteristics. A highly integrated semiconductor device. A miniaturized semiconductor device. The semiconductor device is formed by: forming a semiconductor film including an opening, on an insulating surface; forming a conductive film over the semiconductor film and in the opening, and removing the conductive film over the semiconductor film to form a conductive pillar in the opening; forming an island-shaped mask over the conductive pillar and the semiconductor film; etching the conductive pillar and the semiconductor film using the mask to form a first electrode and a first semiconductor; forming a gate insulating film on a top surface and a side surface of the first semiconductor; and forming a gate electrode that is in contact with a top surface of the gate insulating film and faces the top surface and the side surface of the first semiconductor.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: March 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Kazuya Hanaoka, Suguru Hondo, Shunpei Yamazaki
  • Publication number: 20170062214
    Abstract: The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Koichiro TANAKA, Hidekazu MIYAIRI, Aiko SHIGA, Akihisa SHIMOMURA, Atsuo ISOBE
  • Publication number: 20170062433
    Abstract: A semiconductor device capable of retaining data for a long time is provided. A semiconductor device includes a first transistor including a first insulator, a first oxide semiconductor, a first gate, and a second gate; a second transistor including a second oxide semiconductor, a third gate, and a fourth gate; and a node. The first gate and the second gate overlap with each other with the first oxide semiconductor therebetween. The third gate and the fourth gate overlap with each other with the second oxide semiconductor therebetween. The first oxide semiconductor and the second gate overlap with each other with the first insulator therebetween. One of a source and a drain of the first transistor, the first gate, and the fourth gate are electrically connected to the node. The first insulator is configured to charges.
    Type: Application
    Filed: August 17, 2016
    Publication date: March 2, 2017
    Inventors: Hidekazu MIYAIRI, Masami ENDO
  • Patent number: 9570619
    Abstract: As a display device has higher definition, the number of pixels is increased and thus, the number of gate lines and signal lines is increased. When the number of gate lines and signal lines is increased, it is difficult to mount IC chips including driver circuits for driving the gate lines and the signal lines by bonding or the like, whereby manufacturing cost is increased. A pixel portion and a driver circuit for driving the pixel portion are provided on the same substrate, and at least part of the driver circuit comprises a thin film transistor including an oxide semiconductor sandwiched between gate electrodes. A channel protective layer is provided between the oxide semiconductor and a gate electrode provided over the oxide semiconductor. The pixel portion and the driver circuit are provided on the same substrate, which leads to reduction of manufacturing cost.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: February 14, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Takeshi Osada, Shunpei Yamazaki
  • Patent number: 9563094
    Abstract: A display device of which frame can be narrowed and of which display characteristics are excellent is provided. In a display device including a switch portion or a buffer portion, a logic circuit portion, and a pixel portion, the pixel portion includes a first inverted staggered TFT and a pixel electrode which is connected to a wiring of the first inverted staggered TFT, the switch portion or the buffer portion includes a second inverted staggered TFT in which a first insulating layer, a semiconductor layer, and a second insulating layer are interposed between a first gate electrode and a second gate electrode, the logic circuit portion includes an inverter circuit including a third inverted staggered thin film transistor and a fourth inverted staggered thin film transistor, and the first to the fourth inverted staggered thin film transistors have the same polarity. The inverter circuit may be an EDMOS circuit.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: February 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Shunpei Yamazaki, Takeshi Osada, Hidekazu Miyairi, Yasuhiro Jinbo
  • Publication number: 20170033111
    Abstract: A novel semiconductor device or memory device is provided. Alternatively, a semiconductor device or memory device in which storage capacity per unit area is large is provided. The semiconductor device includes a sense amplifier provided to a semiconductor substrate and a memory cell provided over the sense amplifier. The sense amplifier includes a first transistor. The memory cell includes a capacitor over the semiconductor substrate, a second transistor provided over the capacitor, a conductor, and a groove portion. The capacitor includes a first electrode and a second electrode. The first electrode is formed along the groove portion. The second electrode has a region facing the first electrode in the groove portion. The second transistor includes an oxide semiconductor. One of a source and a drain of the second transistor is electrically connected to the second electrode through the conductor.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 2, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Kiyoshi KATO, Hidekazu MIYAIRI, Akihisa SHIMOMURA, Atsushi HIROSE
  • Publication number: 20170033228
    Abstract: In an active matrix display device, electric characteristics of thin film transistors included in a circuit are important, and performance of the display device depends on the electric characteristics. Thus, by using an oxide semiconductor film including In, Ga, and Zn for an inverted staggered thin film transistor, variation in electric characteristics of the thin film transistor can be reduced. Three layers of a gate insulating film, an oxide semiconductor layer and a channel protective layer are successively formed by a sputtering method without being exposed to air. Further, in the oxide semiconductor layer, the thickness of a region overlapping with the channel protective film is larger than that of a region in contact with a conductive film.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 2, 2017
    Inventors: Shunpei YAMAZAKI, Hidekazu MIYAIRI, Kengo AKIMOTO, Kojiro SHIRAISHI
  • Publication number: 20170025546
    Abstract: A first shape of semiconductor region having on its one side a plurality of sharp convex top-end portions is formed first and a continuous wave laser beam is used for radiation from the above region so as to crystallize the first shape of semiconductor region. A continuous wave laser beam condensed in one or plural lines is used for the laser beam. The first shape of semiconductor region is etched to form a second shape of semiconductor region in which a channel forming region and a source and drain region are formed. The second shape of semiconductor region is disposed so that a channel forming range would be formed on respective crystal regions extending from the plurality of convex end portions. A semiconductor region adjacent to the channel forming region is eliminated.
    Type: Application
    Filed: October 5, 2016
    Publication date: January 26, 2017
    Inventors: Chiho KOKUBO, Aiko SHIGA, Shunpei YAMAZAKI, Hidekazu MIYAIRI, Koji DAIRIKI, Koichiro TANAKA
  • Publication number: 20170025633
    Abstract: A method for manufacturing a sealed structure in which few cracks are generated is provided. Scan with the laser beam is performed so that there is no difference in an irradiation period between the middle portion and the perimeter portion of the glass layer and so that the scanning direction is substantially parallel to the direction in which solidification of the glass layer after melting proceeds. More specifically, in a region where the beam spot is overlapped with the glass layer, scan is performed with a laser beam having a beam spot shape whose width in a scanning direction is substantially uniform. Further, as a laser beam with which the glass layer is irradiated, a laser beam (a linear laser beam) having a linear beam spot shape with a major axis and a minor axis which is orthogonal to the major axis.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura
  • Patent number: 9553202
    Abstract: The semiconductor device includes a first layer including a first transistor, a second layer including a first insulating film over the first layer, a third layer including a second insulating film over the second layer, and a fourth layer including a second transistor over the third layer. A first conductive film electrically connects the first transistor and the second transistor to each other through an opening provided in the first insulating film. A second conductive film electrically connects the first transistor, the second transistor, and the first conductive film to one another through an opening provided in the second insulating film. A channel formation region of the first transistor includes a single crystal semiconductor. A channel formation region of the second transistor includes an oxide semiconductor. The width of a bottom surface of the second conductive film is 5 nm or less.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: January 24, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Motomu Kurata, Shinya Sasagawa, Ryota Hodo, Katsuaki Tochibayashi, Tomoaki Moriwaka, Jiro Nishida, Hidekazu Miyairi, Shunpei Yamazaki
  • Publication number: 20160380007
    Abstract: Provided is a semiconductor device suitable for miniaturization and higher density. The semiconductor device includes a first transistor, a second transistor overlapping with the first transistor, a capacitor overlapping with the second transistor, and a first wiring electrically connected to the capacitor. The first wiring includes a region overlapping with an electrode of the second transistor. The first transistor, the second transistor, and the capacitor are electrically connected to one another. A channel of the first transistor includes a single crystal semiconductor. A channel of the second transistor includes an oxide semiconductor.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventor: Hidekazu MIYAIRI
  • Publication number: 20160380111
    Abstract: An embodiment is to include an inverted staggered (bottom gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. The buffer layer having higher carrier concentration than the semiconductor layer is provided intentionally between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 29, 2016
    Inventors: Shunpei YAMAZAKI, Hidekazu MIYAIRI, Akiharu MIYANAGA, Kengo AKIMOTO, Kojiro SHIRAISHI
  • Patent number: 9530856
    Abstract: A novel semiconductor device with a transistor using an oxide semiconductor film, in which a conductive film including Cu is used as a wiring or the like, is provided. The semiconductor device includes a first insulating film, an oxide semiconductor over the first insulating film, a gate electrode overlapping the oxide semiconductor with a gate insulating film positioned therebetween, a second insulating film in contact with a side surface of the gate electrode, and a third insulating film in contact with a top surface of the gate electrode. The gate electrode includes a Cu—X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, Ti, Zr, Mg, Ca, or a mixture of two or more of these elements).
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 27, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hidekazu Miyairi
  • Publication number: 20160372608
    Abstract: To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Hidekazu MIYAIRI, Kengo AKIMOTO, Yasuo NAKAMURA
  • Patent number: 9525023
    Abstract: One embodiment of the present invention is a semiconductor device which includes a gate electrode; a gate insulating film formed to cover the gate electrode; a semiconductor layer formed over the gate insulating film and placed above the gate electrode; a second insulating film formed over the semiconductor layer; a first insulating film formed over a top surface and a side surface of the second insulating film, a side surface of the semiconductor layer, and the gate insulating film; silicon layers and which are formed over the first insulating film and electrically connected to the semiconductor layer; and a source electrode and a drain electrode which are formed over the silicon layers. The source electrode and the drain electrode are electrically separated from each other over the first insulating film. The semiconductor layer is not in contact with each of the source electrode and the drain electrode.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 20, 2016
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Koji Dairiki, Yasuhiro Jinbo, Tomohiro Kimura, Yoshitaka Yamamoto