Patents by Inventor Hideki Takeuchi

Hideki Takeuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10580867
    Abstract: A FINFET may include a semiconductor fin, spaced apart source and drain regions in the semiconductor fin with a channel region extending therebetween, and at least one dopant diffusion blocking superlattice dividing at least one of the source and drain regions into a lower region and an upper region with the upper region having a same conductivity and higher dopant concentration than the lower region. The dopant diffusion blocking superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a gate on the channel region.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 3, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10576084
    Abstract: The present invention provides 3-[2-fluoro-5-(2,3-difluoro-6-methoxybenzyl-oxy)-4-methoxyphenyl]-2,4-dioxo-1,2,3,4-tetrahydrothieno[3,4-d]pyrimidine-5-carboxylic acid choline salt having excellent solubility and storage stability.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 3, 2020
    Assignee: KISSEI PHARMACEUTICAL CO., LTD.
    Inventors: Kazumichi Jo, Hideki Takeuchi
  • Patent number: 10580866
    Abstract: A semiconductor device may include a semiconductor layer, spaced apart source and drain regions in the semiconductor layer with a channel region extending therebetween, and at least one dopant diffusion blocking superlattice dividing at least one of the source and drain regions into a lower region and an upper region with the upper region having a same conductivity and higher dopant concentration than the lower region. The at least one dopant diffusion blocking superlattice comprising a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a gate on the channel region.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 3, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10529757
    Abstract: A CMOS image sensor may include an active pixel sensor array including pixels, each including a photodiode and read circuitry coupled to the photodiode and including transistors defining a 4T cell arrangement. At least one of the transistors may include a first semiconductor layer and a superlattice on the first semiconductor layer including a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The transistor(s) may also include a second semiconductor layer on the superlattice, spaced apart source and drain regions in the second semiconductor layer defining a channel therebetween, and a gate comprising a gate insulating layer on the second semiconductor layer and a gate electrode on the gate insulating layer.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: January 7, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Patent number: 10529768
    Abstract: A method for making a CMOS image sensor may include forming an active pixel sensor array including pixels, each including a photodiode and read circuitry coupled to the photodiode and including transistors defining a 4T cell arrangement. At least one of the transistors may include a first semiconductor layer and a superlattice on the first semiconductor layer including a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The transistor(s) may also include a second semiconductor layer on the superlattice, spaced apart source and drain regions in the second semiconductor layer defining a channel therebetween, and a gate comprising a gate insulating layer on the second semiconductor layer and a gate electrode on the gate insulating layer.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: January 7, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Patent number: 10461118
    Abstract: A method for making a CMOS image sensor may include forming a plurality of laterally adjacent photodiodes on a semiconductor substrate having a first conductivity types by forming a retrograde well extending downward into the substrate from a surface thereof and having a second conductivity type, forming a first well around a periphery of the retrograde well also having the second conductivity type, and forming a second well within the retrograde well having the first conductivity type. Furthermore, first and second superlattices may be respectively formed overlying each of the first and second wells, with each of the first and second superlattices comprising a plurality of stacked groups of layers, and each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 29, 2019
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Patent number: 10453945
    Abstract: A semiconductor device may include at least one double-barrier resonant tunneling diode (DBRTD). The at least one DBRTD may include a first doped semiconductor layer and a first barrier layer on the first doped semiconductor layer and including a superlattice. The superlattice may include stacked groups of layers, each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one DBRTD may further include an intrinsic semiconductor layer on the first barrier layer, a second barrier layer on the intrinsic semiconductor layer, and a second doped semiconductor layer on the second superlattice layer.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: October 22, 2019
    Assignee: ATOMERA INCORPORATED
    Inventors: Robert J. Mears, Hideki Takeuchi, Marek Hytha
  • Patent number: 10410880
    Abstract: A semiconductor device may include a semiconductor substrate having a front side and a back side opposite the front side, and a superlattice gettering layer on the front side of a semiconductor substrate. The superlattice gettering layer may include stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The device may further include an active semiconductor layer on the superlattice gettering layer opposite the semiconductor substrate, at least one semiconductor circuit in the active semiconductor layer, at least one metal interconnect layer on the active layer, and at least one metal through-via extending from the at least one metal interconnect layer to the back side of the semiconductor substrate. The superlattice gettering layer may further include gettered metal ions.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: September 10, 2019
    Assignee: ATOMERA INCORPORATED
    Inventor: Hideki Takeuchi
  • Patent number: 10396223
    Abstract: A method for making a CMOS image sensor may include forming a superlattice on a semiconductor substrate having a first conductivity type, with the superlattice including a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and a non-semiconductor monolayer(s) constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a plurality of laterally adjacent photodiodes on the superlattice. Each photodiode may include a semiconductor layer on the superlattice and having a first conductivity type dopant and with a lower dopant concentration than the semiconductor substrate, a retrograde well extending downward into the semiconductor layer and having a second conductivity type, a first well around a periphery of the retrograde well having the first conductivity type, and a second well within the retrograde well having the first conductivity type.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 27, 2019
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Patent number: 10381242
    Abstract: A semiconductor processing method may include forming a superlattice gettering layer on a front side of a semiconductor substrate having a first thickness, epitaxially growing an active semiconductor layer on the superlattice gettering layer opposite the semiconductor substrate, forming at least one semiconductor device in the active semiconductor layer, and forming at least one metal interconnect layer on the active layer, and at least one metal through-via extending from the at least one metal interconnect layer into the semiconductor substrate. The method may further include thinning the semiconductor substrate from a back side thereof to a second thickness less than the first thickness, and thinning the semiconductor substrate. The superlattice gettering layer getters metal ions released by the forming of the at least one metal interconnect layer and at least one metal through-via, and thinning the substrate.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: August 13, 2019
    Assignee: ATOMERA INCORPORATED
    Inventor: Hideki Takeuchi
  • Patent number: 10367028
    Abstract: A CMOS image sensor may include a first semiconductor chip including image sensor pixels and readout circuitry electrically connected thereto, and a second semiconductor chip coupled to the first chip in a stack and including image processing circuitry electrically connected to the readout circuitry. The processing circuitry may include a plurality of transistors each including spaced apart source and drain regions and a superlattice channel extending between the source and drain regions. The superlattice channel may include a plurality of stacked groups of layers, each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and a non-semiconductor monolayer(s) constrained within a crystal lattice of adjacent base semiconductor portions. Each transistor may further include a gate insulating layer on the superlattice channel and a gate electrode on the gate insulating layer.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 30, 2019
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Patent number: 10355151
    Abstract: A CMOS image sensor may include a semiconductor substrate having a first conductivity type, and a plurality of laterally adjacent photodiodes formed in the substrate. Each photodiode may include a retrograde well extending downward into the substrate from a surface thereof and having a second conductivity type, a first well around a periphery of the retrograde well having the second conductivity type, and a second well within the retrograde well having the first conductivity type. Each photodiode may further include first and second superlattices respectively overlying each of the first and second wells. Each of the first and second superlattices may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 16, 2019
    Assignee: ATOMERA INCORPORATED
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189817
    Abstract: A method for making a CMOS image sensor may include forming a superlattice on a semiconductor substrate having a first conductivity type, with the superlattice including a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and a non-semiconductor monolayer(s) constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a plurality of laterally adjacent photodiodes on the superlattice. Each photodiode may include a semiconductor layer on the superlattice and having a first conductivity type dopant and with a lower dopant concentration than the semiconductor substrate, a retrograde well extending downward into the semiconductor layer and having a second conductivity type, a first well around a periphery of the retrograde well having the first conductivity type, and a second well within the retrograde well having the first conductivity type.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Yi-Ann CHEN, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189652
    Abstract: A CMOS image sensor may include a semiconductor substrate having a first conductivity type, and a superlattice on the semiconductor substrate including a plurality of stacked groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and a non-semiconductor monolayer(s) constrained within a crystal lattice of adjacent base semiconductor portions. The image sensor may further include a plurality of laterally adjacent photodiodes on the superlattice. Each photodiode may include a semiconductor layer on the superlattice and having a first conductivity type dopant and with a lower dopant concentration than the semiconductor substrate, a retrograde well extending downward into the semiconductor layer from a surface thereof and having a second conductivity type, a first well around a periphery of the retrograde well having the first conductivity type, and a second well within the retrograde well having the first conductivity type.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: YI-ANN CHEN, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189670
    Abstract: A method for making a CMOS image sensor may include forming an active pixel sensor array including pixels, each including a photodiode and read circuitry coupled to the photodiode and including transistors defining a 4T cell arrangement. At least one of the transistors may include a first semiconductor layer and a superlattice on the first semiconductor layer including a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The transistor(s) may also include a second semiconductor layer on the superlattice, spaced apart source and drain regions in the second semiconductor layer defining a channel therebetween, and a gate comprising a gate insulating layer on the second semiconductor layer and a gate electrode on the gate insulating layer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Yi-Ann CHEN, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189655
    Abstract: A method for making a CMOS image sensor may include forming a first semiconductor chip including an array of image sensor pixels and readout circuitry electrically connected thereto, forming a second semiconductor chip comprising image processing circuitry electrically connected to the readout circuitry, and coupling the first semiconductor chip and the second semiconductor chip together in a stack. The readout circuitry may include a plurality of transistors each including spaced apart source and drain regions, a superlattice channel extending between the source and drain regions, and a gate including a gate insulating layer on the superlattice channel and a gate electrode on the gate insulating layer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: YI-ANN CHEN, ABID HUSAIN, HIDEKI TAKEUCHI
  • Publication number: 20190189665
    Abstract: A CMOS image sensor may include a first semiconductor chip including an array of image sensor pixels and readout circuitry electrically connected thereto, and a second semiconductor chip coupled to the first semiconductor chip in a stack and including image processing circuitry electrically connected to the readout circuitry. The readout circuitry may include a plurality of transistors each including spaced apart source and drain regions, a superlattice channel extending between the source and drain regions, and a gate including a gate insulating layer on the superlattice channel and a gate electrode on the gate insulating layer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: YI-ANN CHEN, ABID HUSAIN, HIDEKI TAKEUCHI
  • Publication number: 20190189818
    Abstract: A CMOS image sensor may include a semiconductor substrate having a first conductivity type, and a plurality of laterally adjacent photodiodes formed in the substrate. Each photodiode may include a retrograde well extending downward into the substrate from a surface thereof and having a second conductivity type, a first well around a periphery of the retrograde well having the second conductivity type, and a second well within the retrograde well having the first conductivity type. Each photodiode may further include first and second superlattices respectively overlying each of the first and second wells. Each of the first and second superlattices may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: YI-ANN CHEN, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189658
    Abstract: A CMOS image sensor may include an active pixel sensor array including pixels, each including a photodiode and read circuitry coupled to the photodiode and including transistors defining a 4T cell arrangement. At least one of the transistors may include a first semiconductor layer and a superlattice on the first semiconductor layer including a plurality of stacked groups of layers, with each group including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The transistor(s) may also include a second semiconductor layer on the superlattice, spaced apart source and drain regions in the second semiconductor layer defining a channel therebetween, and a gate comprising a gate insulating layer on the second semiconductor layer and a gate electrode on the gate insulating layer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi
  • Publication number: 20190189676
    Abstract: A method for making a CMOS image sensor may include forming a plurality of laterally adjacent photodiodes on a semiconductor substrate having a first conductivity types by forming a retrograde well extending downward into the substrate from a surface thereof and having a second conductivity type, forming a first well around a periphery of the retrograde well also having the second conductivity type, and forming a second well within the retrograde well having the first conductivity type. Furthermore, first and second superlattices may be respectively formed overlying each of the first and second wells, with each of the first and second superlattices comprising a plurality of stacked groups of layers, and each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Yi-Ann Chen, Abid Husain, Hideki Takeuchi