Patents by Inventor Hidenao Kuribayashi

Hidenao Kuribayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160163786
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Application
    Filed: January 28, 2016
    Publication date: June 9, 2016
    Inventors: Takashi YOSHIMURA, Masayuki MIYAZAKI, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Patent number: 9324847
    Abstract: In some aspects of the invention, an n-type field-stop layer can have a total impurity of such an extent that a depletion layer spreading in response to an application of a rated voltage stops inside the n-type field-stop layer together with the total impurity of an n? type drift layer. Also, the n-type field-stop layer can have a concentration gradient such that the impurity concentration of the n-type field-stop layer decreases from a p+ type collector layer toward a p-type base layer, and the diffusion depth is 20 ?m or more. Furthermore, an n+ type buffer layer of which the peak impurity concentration can be higher than that of the n-type field-stop layer at 6×1015 cm?3 or more, and one-tenth or less of the peak impurity concentration of the p+ type collector layer, can be included between the n-type field-stop layer and p+ type collector layer.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: April 26, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Yoshimura, Hidenao Kuribayashi, Yuichi Onozawa, Hayato Nakano, Daisuke Ozaki
  • Patent number: 9276071
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: March 1, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Yoshimura, Masayuki Miyazaki, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20150179638
    Abstract: A method for manufacturing a semiconductor device suppresses loss of vacuum in a chamber of an ion implanter, sag of a resist mask pattern for ion implantation, and producing a resist residue after ashing. First ion implanting process implants n-type impurity to form n+ impurity layer on the whole back surface of n? semiconductor wafer. A resist mask on the back surface of the wafer covers a part corresponding to where n+ cathode layer will be formed. A second ion implanting process implants p-type impurity using the resist mask to form p+ impurity layer in the interior of the n+ impurity layer. Second ion implanting process is split into two or more times. The dose of p-type impurity in second ion implanting process is greater than that of n-type impurity in first ion implanting process. The resist mask is removed, and p+ the n+ impurity layers activated.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 25, 2015
    Inventors: Seiji NOGUCHI, Hidenao KURIBAYASHI
  • Patent number: 8999824
    Abstract: A method for manufacturing a semiconductor device suppresses loss of vacuum in a chamber of an ion implanter, sag of a resist mask pattern for ion implantation, and producing a resist residue after ashing. First ion implanting process implants n-type impurity to form n+ impurity layer on the whole back surface of n? semiconductor wafer. A resist mask on the back surface of the wafer covers a part corresponding to where n+ cathode layer will be formed. A second ion implanting process implants p-type impurity using the resist mask to form p+ impurity layer in the interior of the n+ impurity layer. Second ion implanting process is split into two or more times. The dose of p-type impurity in second ion implanting process is greater than that of n-type impurity in first ion implanting process. The resist mask is removed, and p+ the n+ impurity layers activated.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: April 7, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Seiji Noguchi, Hidenao Kuribayashi
  • Publication number: 20150024556
    Abstract: A semiconductor device includes an input electrode provided on a front surface of a semiconductor substrate of a first conductivity type and an output electrode provided on a rear surface of the semiconductor substrate. The device has reduced deterioration of electrical characteristics when manufactured by a method including introducing impurities into the rear surface of the semiconductor substrate; activating the impurities using a first annealing process to form a first semiconductor layer, which is a contact portion in contact with the output electrode, in a surface layer of the rear surface; radiating protons to the rear surface; and activating the protons radiated using a second annealing process to form a second semiconductor layer of the first conductivity type, which has a higher impurity concentration than the semiconductor substrate, in a region that is deeper than the first semiconductor layer from the rear surface of the semiconductor substrate.
    Type: Application
    Filed: March 29, 2013
    Publication date: January 22, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20140374793
    Abstract: A p+ collector layer is provided in a rear surface of a semiconductor substrate which will be an n? drift layer and an n+ field stop layer is provided in a region which is deeper than the p+ collector layer formed on the rear surface side. A front surface element structure is formed on the front surface of the semiconductor substrate and then protons are radiated to the rear surface of the semiconductor substrate at an acceleration voltage corresponding to the depth at which the n+ field stop layer is formed. A first annealing process is performed at an annealing temperature corresponding to the proton irradiation to change the protons into donors, thereby forming a field stop layer. Then, annealing is performed using annealing conditions suitable for the conditions of a plurality of proton irradiation processes to recover each crystal defect formed by each proton irradiation process.
    Type: Application
    Filed: March 29, 2013
    Publication date: December 25, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20140377938
    Abstract: A method for producing a semiconductor device is disclosed which includes a diffusion step of forming, on a CZ-FZ silicon semiconductor substrate, a deep diffusion layer involving a high-temperature and long-term thermal diffusion process which is performed at a thermal diffusion temperature of 1290° C. to a melting temperature of a silicon crystal for 100 hours or more; and a giving step of giving a diffusion source for an interstitial silicon atom to surface layers of two main surfaces of the silicon semiconductor substrate before the high-temperature, long-term thermal diffusion process. The step of giving the diffusion source for the interstitial silicon atom to the surface layers of the two main surfaces of the silicon semiconductor substrate is performed by forming thermally-oxidized films on two main surfaces of the silicon semiconductor substrate or by implanting silicon ions into surface layers of the two main surfaces of the silicon semiconductor substrate.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Haruo NAKAZAWA, Masaaki OGINO, Hidenao KURIBAYASHI, Hideaki TERANISHI
  • Publication number: 20140377942
    Abstract: A method for manufacturing a semiconductor device suppresses loss of vacuum in a chamber of an ion implanter, sag of a resist mask pattern for ion implantation, and producing a resist residue after ashing. First ion implanting process implants n-type impurity to form n+ impurity layer on the whole back surface of n? semiconductor wafer. A resist mask on the back surface of the wafer covers a part corresponding to where n+ cathode layer will be formed. A second ion implanting process implants p-type impurity using the resist mask to form p+ impurity layer in the interior of the n+ impurity layer. Second ion implanting process is split into two or more times. The dose of p-type impurity in second ion implanting process is greater than that of n-type impurity in first ion implanting process. The resist mask is removed, and p+ the n+ impurity layers activated.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 25, 2014
    Inventors: Seiji NOGUCHI, Hidenao KURIBAYASHI
  • Publication number: 20140291723
    Abstract: A method of producing a seminconductor device is disclosed in which, after proton implantation is performed, a hydrogen-induced donor is formed by a furnace annealing process to form an n-type field stop layer. A disorder generated in a proton passage region is reduced by a laser annealing process to form an n-type disorder reduction region. As such, the n-type field stop layer and the n-type disorder reduction region are formed by the proton implantation. Therefore, it is possible to provide a stable and inexpensive semiconductor device which has low conduction resistance and can improve electrical characteristics, such as a leakage current, and a method for producing the semiconductor device.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Masayuki MIYAZAKI, Takashi YOSHIMURA, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Publication number: 20140246750
    Abstract: Proton irradiation is performed a plurality of times from rear surface of an n-type semiconductor substrate, which is an n? drift layer, forming an n-type FS layer having lower resistance than the n-type semiconductor substrate in the rear surface of the n? drift layer. When the proton irradiation is performed a plurality of times, the next proton irradiation is performed to as to compensate for a reduction in mobility due to disorder which remains after the previous proton irradiation. In this case, the second or subsequent proton irradiation is performed at the position of the disorder which is formed by the previous proton irradiation. In this way, even after proton irradiation and a heat treatment, the disorder is reduced and it is possible to prevent deterioration of characteristics, such as increase in leakage current. It is possible to form an n-type FS layer including a high-concentration hydrogen-related donor layer.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroshi TAKISHITA, Takashi YOSHIMURA, Masayuki MIYAZAKI, Hidenao KURIBAYASHI
  • Publication number: 20140246755
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi YOSHIMURA, Masayuki MIYAZAKI, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Publication number: 20140070268
    Abstract: In some aspects of the invention, an n-type field-stop layer can have a total impurity of such an extent that a depletion layer spreading in response to an application of a rated voltage stops inside the n-type field-stop layer together with the total impurity of an n? type drift layer. Also, the n-type field-stop layer can have a concentration gradient such that the impurity concentration of the n-type field-stop layer decreases from a p+ type collector layer toward a p-type base layer, and the diffusion depth is 20 ?m or more. Furthermore, an n+ type buffer layer of which the peak impurity concentration can be higher than that of the n-type field-stop layer at 6×1015 cm?3 or more, and one-tenth or less of the peak impurity concentration of the p+ type collector layer, can be included between the n-type field-stop layer and p+ type collector layer.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi YOSHIMURA, Hidenao KURIBAYASHI, Yuichi ONOZAWA, Hayato NAKANO, Daisuke OZAKI
  • Publication number: 20130260540
    Abstract: A reverse blocking IGBT is manufactured using a silicon wafer sliced from a single crystal silicon ingot which is manufactured by a floating method using a single crystal silicon ingot manufactured by a Czochralski method as a raw material. A separation layer for ensuring a reverse blocking performance of the reverse blocking IGBT is formed by diffusing impurities implanted into the silicon wafer using a thermal diffusion process. The thermal diffusion process for forming the separation layer is performed in an inert gas atmosphere at a temperature equal to or more than 1290° C. and less than the melting point of silicon. In this way, no crystal defect occurs in the silicon wafer and it is possible to prevent the occurrence of a reverse breakdown voltage defect or a forward defect in the reverse blocking IGBT and thus improve the yield of a semiconductor element.
    Type: Application
    Filed: February 23, 2012
    Publication date: October 3, 2013
    Applicant: FUJI ELECTRIC CO., LTD
    Inventors: Haruo Nakazawa, Masaaki Ogino, Hidenao Kuribayashi, Hideaki Teranishi