Patents by Inventor Hiraku Ishikawa

Hiraku Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10388524
    Abstract: There is provided a method of forming a boron film on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr). The boron film is formed on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr).
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: August 20, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hirokazu Ueda, Masahiro Oka, Hiraku Ishikawa, Yoshimasa Watanabe, Syuhei Yonezawa
  • Publication number: 20180174838
    Abstract: There is provided a method of forming a boron film on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr). The boron film is formed on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr).
    Type: Application
    Filed: December 6, 2017
    Publication date: June 21, 2018
    Inventors: Hirokazu UEDA, Masahiro OKA, Hiraku ISHIKAWA, Yoshimasa WATANABE, Syuhei YONEZAWA
  • Publication number: 20150194637
    Abstract: Provided is a method for forming a silicon nitride film on a substrate accommodated in a processing container. The method includes: supplying a processing gas including a silane-based gas, nitrogen gas, and hydrogen gas or ammonia gas to the processing container; forming the silicon nitride film on the substrate by exciting the processing gas to generate plasma and performing a plasma processing by the plasma; and applying a bias electric field to a part of the silicon nitride film by intermittently performing an ON/OFF control of a high frequency power source during or after the forming of the silicon nitride film.
    Type: Application
    Filed: August 9, 2013
    Publication date: July 9, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Hiraku Ishikawa
  • Patent number: 8936829
    Abstract: Functional groups on the outermost surface of an amorphous hydrocarbon film are substituted. The amorphous hydrocarbon film is formed on a silicon substrate Sub, which is coated with a low-k film. A heat treatment is performed on the amorphous hydrocarbon film in a non-silane gas atmosphere. Next, a heat treatment is performed on the amorphous hydrocarbon film in a silane gas atmosphere immediately after the heat treatment in a non-silane gas atmosphere. After the heat treatment, a film, such as a hard mask, is formed.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: January 20, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Hiraku Ishikawa
  • Patent number: 8809207
    Abstract: A pattern-forming method for forming a predetermined pattern serving as a mask when etching film on a substrate includes the steps of: an organic film pattern-forming step for forming an organic film pattern on a film to be processed; forming a silicon nitride film on the organic film pattern; etching the silicon nitride film so that the silicon nitride film remains only on the lateral wall sections of the organic film pattern; and removing the organic film, thereby forming the predetermined silicon nitride film pattern on the film to be processed on a substrate. With the temperature of the substrate maintained at no more than 100° C., the film-forming step excites a processings gas and generates a plasma, performs plasma processing with the plasma, and forms a silicon nitride film having stress of no more than 100 MPa.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: August 19, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Teruyuki Hayashi, Takaaki Matsuoka, Yuji Ono
  • Patent number: 8741396
    Abstract: An amorphous carbon film, which has excellent etching resistance and is capable of reducing reflectance when a resist film is exposed to light, is form. A method for manufacturing a semiconductor device includes forming an object film to be etched on a wafer, supplying a process gas containing a CO gas and an N2 gas into a processing container, forming an amorphous carbon nitride film from the supplied CO gas and N2 gas, forming a silicon oxide film on the amorphous carbon nitride film, forming an ArF resist film on the silicon oxide film, patterning the ArF resist film, etching the silicon oxide film by using the ArF resist film as a mask, etching the amorphous carbon nitride film by using the silicon oxide film as a mask, and etching the object film to be etched by using the amorphous carbon nitride film as a mask.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Eiichi Nishimura
  • Publication number: 20140080307
    Abstract: A pattern-forming method for forming a predetermined pattern serving as a mask when etching film on a substrate includes the steps of: an organic film pattern-forming step for forming an organic film pattern on a film to be processed; forming a silicon nitride film on the organic film pattern; etching the silicon nitride film so that the silicon nitride film remains only on the lateral wall sections of the organic film pattern; and removing the organic film, thereby forming the predetermined silicon nitride film pattern on the film to be processed on a substrate. With the temperature of the substrate maintained at no more than 100° C., the film-forming step excites a processings gas and generates a plasma, performs plasma processing with the plasma, and forms a silicon nitride film having stress of no more than 100 MPa.
    Type: Application
    Filed: February 20, 2012
    Publication date: March 20, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiraku Ishikawa, Teruyuki Hayashi, Takaaki Matsuoka, Yuji Ono
  • Patent number: 8674397
    Abstract: A sealing film forming method is capable of forming a sealing film having high moisture permeability resistance in a shorter time and at lower cost. The sealing film forming method for forming a sealing film 13 that seals an EL device 12 includes forming a first inorganic layer 13a on a surface of the EL device 12; forming a hydrocarbon layer 13c on the first inorganic layer 13a; flattening the hydrocarbon layer 13c by softening or melting the hydrocarbon layer 13c; curing the hydrocarbon layer 13c; and forming a second inorganic layer 13e thicker than the first inorganic layer 13a on the hydrocarbon layer 13c after curing the hydrocarbon layer 13c.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Teruyuki Hayashi
  • Publication number: 20130330928
    Abstract: A substrate processing system of forming a resist pattern having a molecular resist of a low molecular compound on a substrate includes a film forming device configured to form a resist film on the substrate; an exposure device configured to expose the formed resist film; and a developing device configured to develop the exposed resist film. The film forming device includes a processing chamber configured to accommodate therein the substrate; a holding table that is provided in the processing chamber and configured to hold the substrate thereon; a resist film deposition head configured to supply a vapor of the molecular resist to the substrate held on the holding table; and a depressurizing device configured to depressurize an inside of the processing chamber to a vacuum atmosphere.
    Type: Application
    Filed: January 5, 2012
    Publication date: December 12, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiraku Ishikawa, Teruyuki Hayashi, Takaaki Matsuoka, Yuji Ono
  • Publication number: 20130209666
    Abstract: An evaporating method is capable of forming a thin film on a substrate by a vapor deposition process. The evaporating method includes measuring a vapor concentration of a material gas discharged to the substrate by a detector; and controlling a film forming condition based on a measurement result from the detector.
    Type: Application
    Filed: August 24, 2011
    Publication date: August 15, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tomiko Kamada, Hiraku Ishikawa, Yuji Ono, Teruyuki Hayashi, Takashi Fuse, Misako Saito, Toyohiro Kamada, Shimon Otsuki
  • Patent number: 8461047
    Abstract: A method for processing an amorphous carbon film which has been formed on a substrate and wet-cleaned after being dry-etched includes preparing the substrate having the wet-cleaned amorphous carbon film and modifying a surface of the amorphous carbon film, before forming an upper layer on the wet-cleaned amorphous carbon film.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: June 11, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Takaaki Matsuoka
  • Patent number: 8409460
    Abstract: An amorphous carbon film forming method is performed by using a parallel plate type plasma CVD apparatus in which an upper electrode and a lower electrode are installed within a processing chamber, and the method includes: disposing a substrate on the lower electrode; supplying carbon monoxide and an inert gas into the processing chamber; decomposing the carbon monoxide by applying a high frequency power to at least the upper electrode and generating plasma; and depositing amorphous carbon on the substrate. It is desirable that the upper electrode is a carbon electrode.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 2, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Tadakazu Murai, Eisuke Morisaki
  • Patent number: 8377818
    Abstract: The present invention is an aftertreatment method further applied to an amorphous carbon film to which a treatment including heating is performed after the film has been formed on a substrate. The treatment of preventing oxidation of the amorphous carbon film is performed immediately after the treatment including heating.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: February 19, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Hiraku Ishikawa
  • Patent number: 8262844
    Abstract: Provided is a plasma processing apparatus including a processing vessel accommodating a target object; a microwave generator configured to generate a microwave; a waveguide configured to induce the microwave to the processing vessel; a planar antenna having a plurality of microwave radiation holes through which the microwave induced to the waveguide is radiated toward the processing vessel; a microwave transmission plate configured to serve as a ceiling wall of the processing vessel and transmit the microwave passed from the microwave radiation holes of the planar antenna; a processing gas inlet unit configured to introduce a processing gas into the processing vessel; and a magnetic field generating unit positioned above the planar antenna and configured to generate a magnetic field within the processing vessel and control a property of plasma of the processing gas by the magnetic field, the plasma being generated by the microwave within the processing vessel.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: September 11, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Hiraku Ishikawa, Yasuhiro Tobe
  • Publication number: 20120160671
    Abstract: Provided is a sputtering device which can achieve a sputtering while blocking light that enters from a sputtering space onto a substrate as an object to be sputtered on which an organic thin film is formed, thereby preventing the deterioration in properties of the organic thin film. Specifically provided is a sputtering device for achieving a sputtering of a substrate that is placed on the side of a sputtering space, wherein the sputtering space is formed between a pair of targets that are so placed as to face each other. The sputtering device comprises: an electric power source configured to apply a voltage between the pair of targets; a gas supply unit configured to supply an inert gas to the sputtering space; and a light-shielding mechanism configured to be placed between the sputtering space and the substrate.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 28, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiraku Ishikawa, Yuji Ono, Teruyuki Hayashi
  • Publication number: 20120156884
    Abstract: Disclosed is a film forming method of an amorphous carbon film, including: disposing a substrate in a processing chamber; supplying a processing gas containing carbon, hydrogen and oxygen into the processing chamber; and decomposing the processing gas by heating the substrate in the processing chamber and depositing the amorphous carbon film on the substrate.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 21, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshihisa Nozawa, Hiraku Ishikawa
  • Patent number: 8017519
    Abstract: Disclosed is a semiconductor device including: a substrate; a wiring layer formed on the substrate and made of copper or a copper alloy; a copper diffusion barrier film formed on the wiring layer and made of an amorphous carbon film formed by CVD using a processing gas containing a hydrocarbon gas; and a low-k insulating film formed on the copper diffusion barrier film.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: September 13, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Hiraku Ishikawa
  • Publication number: 20110201206
    Abstract: An amorphous carbon film, which has excellent etching resistance and is capable of reducing reflectance when a resist film is exposed to light, is form. A method for manufacturing a semiconductor device includes forming an object film to be etched on a wafer, supplying a process gas containing a CO gas and an N2 gas into a processing container, forming an amorphous carbon nitride film from the supplied CO gas and N2 gas, forming a silicon oxide film on the amorphous carbon nitride film, forming an ArF resist film on the silicon oxide film, patterning the ArF resist film, etching the silicon oxide film by using the ArF resist film as a mask, etching the amorphous carbon nitride film by using the silicon oxide film as a mask, and etching the object film to be etched by using the amorphous carbon nitride film as a mask.
    Type: Application
    Filed: August 4, 2009
    Publication date: August 18, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiraku Ishikawa, Eiichi Nishimura
  • Publication number: 20110053375
    Abstract: A method for processing an amorphous carbon film which has been formed on a substrate and wet-cleaned after being dry-etched includes preparing the substrate having the wet-cleaned amorphous carbon film and modifying a surface of the amorphous carbon film, before forming an upper layer on the wet-cleaned amorphous carbon film.
    Type: Application
    Filed: January 9, 2009
    Publication date: March 3, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiraku Ishikawa, Takaaki Matsuoka
  • Publication number: 20100323516
    Abstract: Disclosed is a semiconductor device including: a substrate; a wiring layer formed on the substrate and made of copper or a copper alloy; a copper diffusion barrier film formed on the wiring layer and made of an amorphous carbon film formed by CVD using a processing gas containing a hydrocarbon gas; and a low-k insulating film formed on the copper diffusion barrier film.
    Type: Application
    Filed: December 26, 2007
    Publication date: December 23, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Hiraku Ishikawa