Patents by Inventor Hiroaki Niimi

Hiroaki Niimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170133265
    Abstract: A transistor device includes a substrate; a source region and a drain region formed over the substrate; and a source/drain contact formed in contact with at least one of the source region and the drain region, the source/drain contact including a conductive metal and a bilayer disposed between the conductive metal and the at least one of the source and drain region, the bilayer including a metal oxide layer in contact with the conductive metal, and a silicon dioxide layer in contact with the at least one of the source and drain region.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 11, 2017
    Inventors: Huiming Bu, Hui-feng Li, Vijay Narayanan, Hiroaki Niimi, Tenko Yamashita
  • Publication number: 20170125535
    Abstract: An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
    Type: Application
    Filed: September 22, 2016
    Publication date: May 4, 2017
    Inventors: Hiroaki Niimi, Shariq Siddiqui, Tenko Yamashita
  • Patent number: 9640636
    Abstract: One illustrative method disclosed herein includes, among other things, forming an initial vertically oriented channel semiconductor structure having a first height above a substrate, forming a sacrificial spacer structure adjacent the initial vertically oriented channel semiconductor structure and, with the sacrificial spacer in position, performing at least one process operation to define a self-aligned bottom source/drain region for the device that is self-aligned with respect to the sacrificial spacer structure, forming an isolation region in the trench and forming a bottom source/drain electrode above the isolation region. The method also includes removing the sacrificial spacer structure and forming a bottom spacer material around the vertically oriented channel semiconductor structure above the bottom source/drain electrode.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Steven J. Bentley, John H. Zhang, Kwan-Yong Lim, Hiroaki Niimi
  • Patent number: 9640535
    Abstract: A semiconductor device includes an isolation region laterally defining an active region in a semiconductor substrate, a gate structure positioned above the active region, and a sidewall spacer positioned adjacent to sidewalls of the gate structure. An etch stop layer is positioned above and covers a portion of the active region, an interlayer dielectric material is positioned above the active region and covers the etch stop layer, and a confined raised source/drain region is positioned on and in contact with an upper surface of the active region. The confined raised source/drain region extends laterally between and contacts a lower sidewall surface portion of the sidewall spacer and at least a portion of a sidewall surface of the etch stop layer, and a conductive contact element extends through the interlayer dielectric material and directly contacts an upper surface of the confined raised source/drain region.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hiroaki Niimi, Ruilong Xie
  • Publication number: 20170084537
    Abstract: A method of making a semiconductor device includes forming a first source/drain trench and a second source/drain trench over a first and second source/drain region, respectively; forming a first silicon dioxide layer in the first source/drain trench and a second silicon dioxide layer in the second source/drain trench; forming a first source/drain contact over the first source/drain region, the first source/drain contact including a first tri-layer contact disposed between the first silicon dioxide layer and a first conductive material; and forming a second source/drain contact over the second source/drain region, the second source/drain contact including a second tri-layer contact disposed between the second silicon dioxide layer and a second conductive material; wherein the first tri-layer contact includes a first metal oxide layer in contact with the first silicon dioxide layer, and the second tri-layer contact includes a second metal oxide layer in contact with the second silicon dioxide layer.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Inventors: Takashi Ando, Hiroaki Niimi, Tenko Yamashita
  • Patent number: 9589851
    Abstract: A transistor device includes a substrate; a source region and a drain region formed over the substrate; and a source/drain contact formed in contact with at least one of the source region and the drain region, the source/drain contact including a conductive metal and a bilayer disposed between the conductive metal and the at least one of the source and drain region, the bilayer including a metal oxide layer in contact with the conductive metal, and a silicon dioxide layer in contact with the at least one of the source and drain region.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: March 7, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Huiming Bu, Hui-feng Li, Vijay Narayanan, Hiroaki Niimi, Tenko Yamashita
  • Patent number: 9576804
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: February 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Publication number: 20170033018
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20170018463
    Abstract: A transistor device includes a substrate; a source region and a drain region formed over the substrate; and a source/drain contact formed in contact with at least one of the source region and the drain region, the source/drain contact including a conductive metal and a bilayer disposed between the conductive metal and the at least one of the source and drain region, the bilayer including a metal oxide layer in contact with the conductive metal, and a silicon dioxide layer in contact with the at least one of the source and drain region.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 19, 2017
    Inventors: Huiming Bu, Hui-feng Li, Vijay Narayanan, Hiroaki Niimi, Tenko Yamashita
  • Patent number: 9543216
    Abstract: A trench contact epilayer in a semiconductor device is provided. Embodiments include forming trenches through an interlayer dielectric (ILD) over source/drain regions in NFET and PFET regions; depositing a conformal silicon nitride (SiN) layer over the ILD and in the trenches; removing the SiN layer in the PFET region; growing a germanium (Ge) epilayer over the source/drain regions in the PFET region; depositing metal over the ILD and in the trenches in the NFET and PFET regions; etching the metal in the NFET region to expose the conformal SiN layer; removing the SiN layer in the NFET region; growing a Group III-V epilayer over the source/drain regions in the NFET region; and depositing metal over the ILD and in the trenches in the NFET region.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 10, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hiroaki Niimi, Ruilong Xie
  • Publication number: 20160358826
    Abstract: A trench contact epilayer in a semiconductor device is provided. Embodiments include forming trenches through an interlayer dielectric (ILD) over source/drain regions in NFET and PFET regions; depositing a conformal silicon nitride (SiN) layer over the ILD and in the trenches; removing the SiN layer in the PFET region; growing a germanium (Ge) epilayer over the source/drain regions in the PFET region; depositing metal over the ILD and in the trenches in the NFET and PFET regions; etching the metal in the NFET region to expose the conformal SiN layer; removing the SiN layer in the NFET region; growing a Group III-V epilayer over the source/drain regions in the NFET region; and depositing metal over the ILD and in the trenches in the NFET region.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Hiroaki NIIMI, Ruilong XIE
  • Publication number: 20160351566
    Abstract: A semiconductor device includes an isolation region laterally defining an active region in a semiconductor substrate, a gate structure positioned above the active region, and a sidewall spacer positioned adjacent to sidewalls of the gate structure. An etch stop layer is positioned above and covers a portion of the active region, an interlayer dielectric material is positioned above the active region and covers the etch stop layer, and a confined raised source/drain region is positioned on and in contact with an upper surface of the active region. The confined raised source/drain region extends laterally between and contacts a lower sidewall surface portion of the sidewall spacer and at least a portion of a sidewall surface of the etch stop layer, and a conductive contact element extends through the interlayer dielectric material and directly contacts an upper surface of the confined raised source/drain region.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 1, 2016
    Inventors: Hiroaki Niimi, Ruilong Xie
  • Publication number: 20160336422
    Abstract: An integrated circuit containing metal replacement gates may be formed by forming a nitrogen-rich titanium-based barrier between a high-k gate dielectric layer and a metal work function layer of a PMOS transistor. The nitrogen-rich titanium-based barrier is less than 1 nanometer thick and has an atomic ratio of titanium to nitrogen of less than 43:57. The nitrogen-rich titanium-based barrier may be formed by forming a titanium based layer over the gate dielectric layer and subsequently adding nitrogen to the titanium based layer. The metal work function layer is formed over the nitrogen-rich titanium-based barrier.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Inventors: Hiroaki Niimi, James Joseph Chambers
  • Patent number: 9496262
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 9484255
    Abstract: An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: November 1, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Hiroaki Niimi, Shariq Siddiqui, Tenko Yamashita
  • Publication number: 20160300722
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 13, 2016
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Publication number: 20160300836
    Abstract: An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Mahalingam Nandakumar
  • Patent number: 9431509
    Abstract: An integrated circuit containing metal replacement gates may be formed by forming a nitrogen-rich titanium-based barrier between a high-k gate dielectric layer and a metal work function layer of a PMOS transistor. The nitrogen-rich titanium-based barrier is less than 1 nanometer thick and has an atomic ratio of titanium to nitrogen of less than 43:57. The nitrogen-rich titanium-based barrier may be formed by forming a titanium based layer over the gate dielectric layer and subsequently adding nitrogen to the titanium based layer. The metal work function layer is formed over the nitrogen-rich titanium-based barrier.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, James Joseph Chambers
  • Publication number: 20160233312
    Abstract: A replacement metal gate transistor structure and method with thin silicon nitride sidewalls and with little or no high-k dielectric on the vertical sidewalls of the replacement gate transistor trench
    Type: Application
    Filed: April 8, 2016
    Publication date: August 11, 2016
    Inventors: Hiroaki Niimi, Mahalingam Nandakumar
  • Patent number: 9412695
    Abstract: Methods and interconnect structures for circuit structure transistors are provided. The methods include, for instance: providing one or more fins above a substrate, and an insulating material over the fin(s) and the substrate; providing barrier structures extending into the insulating material, the barrier structures being disposed along opposing sides of the fin(s); exposing a portion of the fin(s) and the barrier structures; and forming an interconnect structure extending over the fin(s), the barrier structures confining the interconnect structure to a defined dimension transverse to the fin(s). Exposing the portion of the fin(s) and barrier structures may include isotropically etching the insulating material with an etchant that selectively etches the insulating material without affecting a barrier material of the barrier structures.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Hiroaki Niimi, Andreas Knorr