Patents by Inventor Hiroaki Niimi

Hiroaki Niimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160225673
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: August 4, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9396951
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Patent number: 9397009
    Abstract: A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Joseph Chambers, Hiroaki Niimi
  • Patent number: 9397100
    Abstract: An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Mahalingam Nandakumar
  • Patent number: 9397003
    Abstract: A method includes forming a first confined raised source/drain region between an adjacent pair of first dummy gate structures and a second confined raised source/drain region between an adjacent pair of second dummy gate structures during a same first epitaxial growth process, the first and second confined raised source/drain regions including a first semiconductor material. Thereafter, a replacement metal gate process is performed to replace the pairs of first and second dummy gate structures with respective pairs of first and second replacement gate structures. After the replacement metal gate process is performed, a first contact element is formed to the first confined raised source/drain region, a second epitaxial growth process is performed to form a layer of a second semiconductor material above the second confined raised source/drain region, and a second contact element is formed to the layer of second semiconductor material layer.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: July 19, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hiroaki Niimi, Ruilong Xie
  • Publication number: 20160204198
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 14, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9368355
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: June 14, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Publication number: 20160155641
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Application
    Filed: January 21, 2016
    Publication date: June 2, 2016
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Patent number: 9356131
    Abstract: The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: May 31, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Hiroaki Niimi
  • Patent number: 9337044
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: May 10, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Patent number: 9337046
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 10, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Patent number: 9337297
    Abstract: A replacement metal gate transistor structure and method with thin silicon nitride sidewalls and with little or no high-k dielectric on the vertical sidewalls of the replacement gate transistor trench.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: May 10, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Mahalingam Nandakumar
  • Patent number: 9324717
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Publication number: 20160079168
    Abstract: Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hiroaki NIIMI, Kisik CHOI, Hoon KIM, Andy WEI, Guillaume BOUCHE
  • Patent number: 9269636
    Abstract: A replacement metal gate transistor is formed with high quality gate dielectric under the high-k dielectric. The high quality gate dielectric is formed on the substrate at a temperature of at least 850° C. A sacrificial gate dielectric is formed on the high quality gate dielectric and a polysilicon replacement gate is formed on the sacrificial gate dielectric. The polysilicon replacement gate is removed leaving a gate trench. The sacrificial gate dielectric is removed from a bottom of the gate. A high-k dielectric is deposited into the gate trench. Metal gate material is deposited on the high-k dielectric.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: February 23, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahalingam Nandakumar, Hiroaki Niimi
  • Publication number: 20160049401
    Abstract: A non-planar semiconductor structure, for example, a dual FinFET structure, includes a n-type semiconductor device and a p-type semiconductor device. Metal-insulator-semiconductor (MIS) contacts provide electrical connection to the n-type device, and metal-semiconductor (MS) contacts provide electrical connection to the p-type device. The metal of both MIS and MS contacts is a same n-type work function metal. In one example, the semiconductor of the MIS contact includes epitaxial silicon germanium with a relatively low percentage of germanium, the insulator of the MIS contact includes titanium dioxide, the semiconductor for the MS contact includes silicon germanium with a relatively high percentage of germanium or pure germanium, and the metal for both contacts includes a n-type work function metal.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Min Gyu SUNG, Hiroaki NIIMI, Kwanyong LIM
  • Publication number: 20160042953
    Abstract: A process is disclosed of forming metal replacement gates for PMOS transistors with oxygen in the metal gates such that the PMOS gates have effective work functions above 4.85. Metal work function layers in the PMOS gates are oxidized at low temperature to increase their effective work functions to the desired PMOS range. Hydrogen may also be incorporated at an interface between the metal gates and underlying gate dielectrics. Materials for the metal work function layers and processes for the low temperature oxidation are disclosed.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 11, 2016
    Inventors: Hiroaki Niimi, James Joseph Chambers
  • Publication number: 20160013061
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Publication number: 20160013083
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef
  • Publication number: 20160013082
    Abstract: Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Malcolm J. Bevan, Haowen Bu, Hiroaki Niimi, Husam N. Alshareef