Patents by Inventor Hiroaki Yoda

Hiroaki Yoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8363462
    Abstract: A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0?Ms<?{square root over ( )}{Jw/(6?At)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Masahiko Nakayama, Tadashi Kai, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20130020659
    Abstract: A magnetoresistive element according to an embodiment includes: a first ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a second ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a nonmagnetic layer placed between the first ferromagnetic layer and the second ferromagnetic layer; a first interfacial magnetic layer placed between the first ferromagnetic layer and the nonmagnetic layer; and a second interfacial magnetic layer placed between the second ferromagnetic layer and the nonmagnetic layer. The first interfacial magnetic layer includes a first interfacial magnetic film, a second interfacial magnetic film placed between the first interfacial magnetic film and the nonmagnetic layer and having a different composition from that of the first interfacial magnetic film, and a first nonmagnetic film placed between the first interfacial magnetic film and the second interfacial magnetic film.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 24, 2013
    Inventors: Tadaomi Daibou, Eiji Kitagawa, Yutaka Hashimoto, Masaru Tokou, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Makoto Nagamine, Tadashi Kai, Hiroaki Yoda
  • Patent number: 8349622
    Abstract: A magneto-resistive element according to an aspect of the present invention includes a free layer whose magnetized state changes and a pinned layer whose magnetized state is fixed. The free layer comprises first and second ferromagnetic layers and a non-magnetic layer which is arranged between the first and second ferromagnetic layers. An intensity of exchange coupling between the first and second ferromagnetic layers is set so that an astroid curve in a hard axis direction opens.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Sumio Ikegawa, Masahiko Nakayama, Tadashi Kai, Eiji Kitagawa, Hiroaki Yoda
  • Publication number: 20130001714
    Abstract: According to one embodiment, a magnetoresistive element includes a storage layer having a perpendicular and variable magnetization, a reference layer having a perpendicular and invariable magnetization, a shift adjustment layer having a perpendicular and invariable magnetization in a direction opposite to a magnetization of the reference layer, a first nonmagnetic layer between the storage layer and the reference layer, and a second nonmagnetic layer between the reference layer and the shift adjustment layer. A switching magnetic field of the reference layer is equal to or smaller than a switching magnetic field of the storage layer, and a magnetic relaxation constant of the reference layer is larger than a magnetic relaxation constant of the storage layer.
    Type: Application
    Filed: March 19, 2012
    Publication date: January 3, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsuya Nishiyama, Hisanori Aikawa, Tadashi Kai, Toshihiko Nagase, Koji Ueda, Hiroaki Yoda
  • Patent number: 8347175
    Abstract: According to one embodiment, a magnetic memory includes a magnetoresistive effect element including a first magnetic layer invariable in magnetization direction, a second magnetic layer variable in magnetization direction, and an intermediate layer between the first magnetic layer and the second magnetic layer, an error detecting and correcting circuit which detects whether first data in the magnetoresistive effect element includes any error and which outputs error-corrected second data when the first data includes an error, a writing circuit which generates one of the first write current including a first pulse width and the second write current including a second pulse width greater than the first pulse width, and a control circuit which controls the writing circuit to pass the second write current through the magnetoresistive effect element when the second data is written into the magnetoresistive effect element.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Sumio Ikegawa, Naoharu Shimomura, Kenji Tsuchida, Hiroaki Yoda
  • Patent number: 8305801
    Abstract: A magnetoresistive element according to an embodiment includes: a first ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a second ferromagnetic layer having an axis of easy magnetization in a direction perpendicular to a film plane; a nonmagnetic layer placed between the first ferromagnetic layer and the second ferromagnetic layer; a first interfacial magnetic layer placed between the first ferromagnetic layer and the nonmagnetic layer; and a second interfacial magnetic layer placed between the second ferromagnetic layer and the nonmagnetic layer. The first interfacial magnetic layer includes a first interfacial magnetic film, a second interfacial magnetic film placed between the first interfacial magnetic film and the nonmagnetic layer and having a different composition from that of the first interfacial magnetic film, and a first nonmagnetic film placed between the first interfacial magnetic film and the second interfacial magnetic film.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadaomi Daibou, Eiji Kitagawa, Yutaka Hashimoto, Masaru Tokou, Toshihiko Nagase, Katsuya Nishiyama, Koji Ueda, Makoto Nagamine, Tadashi Kai, Hiroaki Yoda
  • Patent number: 8299552
    Abstract: A magnetoresistive element includes a first underlying layer having an NaCl structure and containing a nitride orienting in a (001) plane, a first magnetic layer provided on the first underlying layer, having magnetic anisotropy perpendicular to a film surface, having an L10 structure, and containing a ferromagnetic alloy orienting in a (001) plane, a first nonmagnetic layer provided on the first magnetic layer, and a second magnetic layer provided on the first nonmagnetic layer and having magnetic anisotropy perpendicular to a film surface.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Katsuya Nishiyama, Tadaomi Daibou, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 8279663
    Abstract: A magnetoresistance effect element includes: a first ferromagnetic layer having invariable magnetization perpendicular to a film plane; a second ferromagnetic layer having variable magnetization perpendicular to the film plane; a first nonmagnetic layer interposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer provided on an opposite side of the second ferromagnetic layer from the first nonmagnetic layer, and having variable magnetization parallel to the film plane; and a second nonmagnetic layer interposed between the second and third ferromagnetic layers.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Nakayama, Tadashi Kai, Sumio Ikegawa, Hiroaki Yoda, Tatsuya Kishi
  • Publication number: 20120241881
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: December 2, 2011
    Publication date: September 27, 2012
    Applicants: Tohoku University, KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Publication number: 20120244640
    Abstract: According to one embodiment, a method of manufacturing a multilayer film, the method includes forming a first layer, forming a second layer on the first layer, and transcribing a crystal information of one of the first and second layers to the other one of the first and second layers by executing a GCIB-irradiation to the second layer.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 27, 2012
    Inventors: Yuichi OHSAWA, Shigeki Takahashi, Junichi Ito, Daisuke Saida, Kyoichi Suguro, Hiroaki Yoda
  • Publication number: 20120241884
    Abstract: According to one embodiment, a magnetic memory includes a magnetoresistive element. The magnetoresistive element includes a reference layer having an invariable magnetization direction, a storage layer having a variable magnetization direction, and a spacer layer provided between the reference layer and the storage layer. The storage layer has a multilayered structure including first and second magnetic layers, the second magnetic layer is provided between the first magnetic layer and the spacer layer and has a magnetic anisotropy energy lower than that of the first magnetic layer, and an exchange coupling constant Jex between the first magnetic layer and the second magnetic layer is not more than 5 erg/cm2.
    Type: Application
    Filed: March 28, 2012
    Publication date: September 27, 2012
    Inventors: Hisanori AIKAWA, Tadashi Kai, Masahiko Nakayama, Sumio Ikegawa, Naoharu Shimomura, Eiji Kitagawa, Tatsuya Kishi, Jyunichi Ozeki, Hiroaki Yoda, Satoshi Yanagi
  • Publication number: 20120241827
    Abstract: A magnetoresistive element according to an embodiment includes: a first to third ferromagnetic layers, and a first nonmagnetic layer, the first and second ferromagnetic layers each having an axis of easy magnetization in a direction perpendicular to a film plane, the third ferromagnetic layer including a plurality of ferromagnetic oscillators generating rotating magnetic fields of different oscillation frequencies from one another. Spin-polarized electrons are injected into the first ferromagnetic layer and induce precession movements in the plurality of ferromagnetic oscillators of the third ferromagnetic layer by flowing a current between the first and third ferromagnetic layers, the rotating magnetic fields are generated by the precession movements and are applied to the first ferromagnetic layer, and at least one of the rotating magnetic fields assists a magnetization switching in the first ferromagnetic layer.
    Type: Application
    Filed: August 16, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Minoru Amano, Daisuke Saida, Junichi Ito, Yuichi Ohsawa, Chikayoshi Kamata, Saori Kashiwada, Hiroaki Yoda
  • Publication number: 20120244639
    Abstract: According to one embodiment, a method of manufacturing a magnetic memory, the method includes forming a first magnetic layer having a variable magnetization, forming a tunnel barrier layer on the first magnetic layer, forming a second magnetic layer on the tunnel barrier layer, the second magnetic layer having an invariable magnetization, forming a hard mask layer as a mask on the second magnetic layer, patterning the second magnetic layer by using the mask of the hard mask layer, and executing a GCIB-irradiation by using the mask of the hard mask layer, after the patterning.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 27, 2012
    Inventors: Yuichi OHSAWA, Shigeki Takahashi, Junichi Ito, Daisuke Saida, Kyoichi Suguro, Hiroaki Yoda
  • Publication number: 20120230091
    Abstract: According to one embodiment, a magnetic memory includes at least one memory cell including a magnetoresistive element, and first and second electrodes. The element includes a first magnetic layer, a tunnel barrier layer, a second magnetic layer, and a third magnetic layer provided on the second magnetic layer and having a magnetization antiparallel to the magnetization direction of the second magnetic layer. A diameter of an upper surface of the first magnetic layer is smaller than that of a lower surface of the tunnel barrier layer. A diameter of a lower surface of the second magnetic layer is not more than that of an upper surface of the tunnel barrier layer.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 13, 2012
    Inventors: Satoshi YANAGI, Eiji KITAGAWA, Masahiko NAKAYAMA, Jyunichi OZEKI, Hisanori AIKAWA, Naoharu SHIMOMURA, Masatoshi YOSHIKAWA, Minoru AMANO, Shigeki TAKAHASHI, Hiroaki YODA
  • Patent number: 8223533
    Abstract: A magnetic memory includes a magnetoresistive effect device comprising: a first ferromagnetic layer that has magnetic anisotropy in a direction perpendicular to a film plane thereof; a first nonmagnetic layer that is provided on the first ferromagnetic layer; a first reference layer that is provided on the first nonmagnetic layer, has magnetic anisotropy in a direction perpendicular to a film plane thereof, has magnetization antiparallel to a magnetization direction of the first ferromagnetic layer, and has a film thickness that is 1/5.2 to 1/1.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jyunichi Ozeki, Naoharu Shimomura, Sumio Ikegawa, Tadashi Kai, Masahiko Nakayama, Hisanori Aikawa, Tatsuya Kishi, Hiroaki Yoda, Eiji Kitagawa, Masatoshi Yoshikawa
  • Patent number: 8218355
    Abstract: A magnetoresistive element includes an underlying layer having a cubic or tetragonal crystal structure oriented in a (001) plane, a first magnetic layer provided on the underlying layer, having perpendicular magnetic anisotropy, and having an fct structure oriented in a (001) plane, a non-magnetic layer provided on the first magnetic layer, and a second magnetic layer provided on the non-magnetic layer, and having perpendicular magnetic anisotropy. An in-plane lattice constant a1 of the underlying layer and an in-plane lattice constant a2 of the first magnetic layer satisfy the following equation in which b is a magnitude of Burgers vector of the first magnetic layer, ? is an elastic modulus of the first magnetic layer, and hc is a thickness of the first magnetic layer. |?{square root over (2)}×a1/2?a2|/a2<b×{ln (hc/b)+1}/{2?×hc×(1+?)}.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Masatoshi Yoshikawa, Toshihiko Nagase, Tadaomi Daibou, Makoto Nagamine, Katsuya Nishiyama, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20120163070
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a perpendicular and variable magnetization, a second magnetic layer with a perpendicular and invariable magnetization, and a first nonmagnetic layer between the first and second magnetic layer. The first magnetic layer has a laminated structure of first and second ferromagnetic materials. A magnetization direction of the first magnetic layer is changed by a current which pass through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer. A perpendicular magnetic anisotropy of the second ferromagnetic material is smaller than that of the first ferromagnetic material. A film thickness of the first ferromagnetic material is thinner than that of the second ferromagnetic material.
    Type: Application
    Filed: February 28, 2012
    Publication date: June 28, 2012
    Inventors: Toshihiko Nagase, Tadashi Kai, Katsuya Nishiyama, Eiji Kitagawa, Tadaomi Daibou, Masahiko Nakayama, Makoto Nagamine, Shigeto Fukatsu, Masatoshi Yoshikawa, Hiroaki Yoda
  • Patent number: 8208292
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: June 26, 2012
    Assignees: Kabushiki Kaisha Toshiba, National Institute of Advanced Industrial Science and Technology
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 8169817
    Abstract: A magnetoresistive device includes: a magnetic recording layer including a first magnetic layer having perpendicular magnetic anisotropy, and a second magnetic layer having in-plane magnetic anisotropy and being exchange-coupled to the first magnetic layer, Curie temperature of the second magnetic layer being lower than Curie temperature of the first magnetic layer, and the magnetic recording layer having a magnetization direction perpendicular to a film plane; a magnetic reference layer having a magnetization direction which is perpendicular to a film plane and is invariable; and a nonmagnetic layer provided between the magnetic recording layer and the magnetic reference layer. The magnetization direction of the magnetic recording layer is changeable by spin-polarized electrons caused by flowing current between the magnetic recording layer and the magnetic reference layer in a direction perpendicular to the film plane.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Nakayama, Hiroaki Yoda, Tadashi Kai, Hisanori Aikawa, Katsuya Nishiyama, Jyunichi Ozeki
  • Publication number: 20120099369
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Inventors: Tadashi KAI, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando