Patents by Inventor Hiroki Ohno
Hiroki Ohno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12048207Abstract: A first organic resin layer is formed over a first substrate; a first insulating film is formed over the first organic resin layer; a first element layer is formed over the first insulating film; a second organic resin layer is formed over a second substrate; a second insulating film is formed over the second organic resin layer; a second element layer is formed over the second insulating film; the first substrate and the second substrate are bonded; a first separation step in which adhesion between the first organic resin layer and the first substrate is reduced; the first organic resin layer and a first flexible substrate are bonded with a first bonding layer; a second separation step in which adhesion between the second organic resin layer and the second substrate is reduced; and the second organic resin layer and a second flexible substrate are bonded with a second bonding layer.Type: GrantFiled: April 25, 2023Date of Patent: July 23, 2024Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Masakatsu Ohno, Hiroki Adachi, Satoru Idojiri, Koichi Takeshima
-
Publication number: 20220367214Abstract: A substrate cleaning method includes: supplying a gas mixture of a cluster forming gas for forming a cluster by adiabatic expansion and a carrier gas having a smaller molecular weight or atomic weight than the cluster forming gas to a nozzle; forming the cluster by injecting the gas mixture from the nozzle; removing particles adhering to the substrate by the cluster; and continuously supplying the carrier gas to the nozzle for a set time period from an end time of the supply of the cluster forming gas to the nozzle.Type: ApplicationFiled: October 12, 2020Publication date: November 17, 2022Inventor: Hiroki OHNO
-
Patent number: 10950465Abstract: Disclosed is a method of cleaning a substrate processing apparatus in which a substrate having a surface wet by a liquid is brought into contact with a supercritical fluid so as to perform a drying process of drying the substrate. The method includes a cleaning gas filling process and an exhausting process. The cleaning gas filling process fills a cleaning gas containing isopropyl alcohol in the substrate processing apparatus. The exhausting process exhausts the cleaning gas from an inside of the substrate processing apparatus after the cleaning gas filling process.Type: GrantFiled: November 29, 2017Date of Patent: March 16, 2021Assignee: TOKYO ELECTRON LIMITEDInventors: Shotaro Kitayama, Gentaro Goshi, Hiroki Ohno, Keisuke Egashira, Yosuke Kawabuchi, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Hiromi Kiyose
-
Patent number: 10923368Abstract: A substrate processing apparatus according to an embodiment includes a substrate processing tank, a temperature adjustment unit, and a controller. The substrate processing tank is configured to perform an etching processing by immersing a substrate in a phosphoric acid processing liquid therein. The temperature adjustment unit is configured to adjust the temperature of the phosphoric acid processing liquid. The controller is configured to control the temperature adjustment unit to lower the temperature of the phosphoric acid processing liquid as the etching processing proceeds.Type: GrantFiled: October 19, 2018Date of Patent: February 16, 2021Assignee: Tokyo Electron LimitedInventors: Takao Inada, Hisashi Kawano, Hiroki Ohno
-
Patent number: 10692739Abstract: A substrate processing apparatus according to an exemplary embodiment to the present disclosure includes: a main body which has therein a processing space capable of accommodating the substrate; a holding unit which holds the substrate in the main body; a supply unit which is provided at a side of the substrate held by the holding unit and supplies the processing fluid into the processing space; a discharge unit which discharges the processing fluid from an inside of the processing space; and a flow path limiting unit which limits a lower end of a flow path at an upstream side which is formed while the processing fluid flows from the supply unit to the discharge unit. Further, an upper end of the flow path limiting unit is disposed at a position higher than the upper surface of the substrate held by the holding unit.Type: GrantFiled: February 28, 2018Date of Patent: June 23, 2020Assignee: TOKYO ELECTRON LIMITEDInventors: Yosuke Kawabuchi, Gentaro Goshi, Keisuke Egashira, Hiroki Ohno, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Shotaro Kitayama
-
Patent number: 10651061Abstract: A substrate processing apparatus includes a processing unit and a control unit. The processing unit is configured to perform an etching processing by immersing a substrate in a processing liquid containing phosphoric acid and a silicon-containing compound. The control unit is configured to control the processing liquid such that the substrate is processed, in a first processing time of the etching processing, with the processing liquid having a first phosphoric acid concentration and a first silicon concentration, and the substrate is processed, in a second processing time later than the first processing time, with the processing liquid having a second preset phosphoric acid concentration lower than the first phosphoric acid concentration and a second preset silicon concentration lower than the first silicon concentration or with the processing liquid having the second preset phosphoric acid concentration and the first silicon concentration.Type: GrantFiled: October 18, 2018Date of Patent: May 12, 2020Assignee: TOKYO ELECTRON LIMITEDInventors: Hiroki Ohno, Takao Inada, Hisashi Kawano
-
Patent number: 10504718Abstract: During at least part of a time period for a pressure increasing step of increasing a pressure inside a processing container from a pressure lower than a critical pressure of a processing fluid to a pressure higher than the critical pressure, pressure increasing is performed by supplying the processing fluid into the processing container from a fluid supply source while discharging the processing fluid from the processing container at a controlled discharge flow rate. Particles attached to the surfaces of members inside the processing container travel upward by the supply of the processing fluid into the processing container from the fluid supply source. The particles are discharged along with the processing fluid from the processing container.Type: GrantFiled: November 16, 2017Date of Patent: December 10, 2019Assignee: Tokyo Electron LimitedInventors: Hiroki Ohno, Keisuke Egashira, Gentaro Goshi, Yosuke Kawabuchi, Shotaro Kitayama, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Hiromi Kiyose
-
Patent number: 10395950Abstract: A substrate processing apparatus performs: a pressure raising process of raising a pressure within the processing container to a processing pressure higher than a critical pressure of the processing fluid, after the substrate is accommodated in the processing container; and a circulation process of supplying the processing fluid to the processing container and discharging the processing fluid from the processing container while keeping a pressure at which the processing fluid is maintained in the supercritical state, within the processing container. In the pressure raising process, the supply of the processing fluid from the second fluid supply unit is stopped and the processing fluid is supplied from the first fluid supply unit into the processing container until at least the pressure within the processing container reaches the critical pressure. In the circulation process, the processing fluid is supplied into the processing container from the second fluid supply unit.Type: GrantFiled: November 2, 2017Date of Patent: August 27, 2019Assignee: Tokyo Electron LimitedInventors: Gentaro Goshi, Keisuke Egashira, Yosuke Kawabuchi, Hiromi Kiyose, Takuro Masuzumi, Hiroki Ohno, Kento Tsukano, Hiroshi Marumoto, Shotaro Kitayama
-
Publication number: 20190148183Abstract: A substrate processing apparatus according to an embodiment includes a substrate processing tank, a temperature adjustment unit, and a controller. The substrate processing tank is configured to perform an etching processing by immersing a substrate in a phosphoric acid processing liquid therein. The temperature adjustment unit is configured to adjust the temperature of the phosphoric acid processing liquid. The controller is configured to control the temperature adjustment unit to lower the temperature of the phosphoric acid processing liquid as the etching processing proceeds.Type: ApplicationFiled: October 19, 2018Publication date: May 16, 2019Inventors: Takao Inada, Hisashi Kawano, Hiroki Ohno
-
Publication number: 20190122905Abstract: A substrate processing apparatus includes a processing unit and a control unit. The processing unit is configured to perform an etching processing by immersing a substrate in a processing liquid containing phosphoric acid and a silicon-containing compound. The control unit is configured to control the processing liquid such that the substrate is processed, in a first processing time of the etching processing, with the processing liquid having a first phosphoric acid concentration and a first silicon concentration, and the substrate is processed, in a second processing time later than the first processing time, with the processing liquid having a second preset phosphoric acid concentration lower than the first phosphoric acid concentration and a second preset silicon concentration lower than the first silicon concentration or with the processing liquid having the second preset phosphoric acid concentration and the first silicon concentration.Type: ApplicationFiled: October 18, 2018Publication date: April 25, 2019Inventors: Hiroki Ohno, Takao Inada, Hisashi Kawano
-
Publication number: 20190096710Abstract: A substrate processing apparatus, a substrate processing method and a recording medium capable of suppressing precipitation of a silicon oxide while improving selectivity for etching a silicon nitride film are provided. The substrate processing apparatus includes a SiO2 precipitation inhibitor supply unit and a control unit. The SiO2 precipitation inhibitor supply unit is configured to supply a SiO2 precipitation inhibitor to be mixed into a phosphoric acid processing liquid used in performing an etching processing in a substrate processing tub. The control unit is configured to set a SiO2 precipitation inhibitor concentration contained in the phosphoric acid processing liquid based on a temperature of the phosphoric acid processing liquid, and configured to control a supply amount of the SiO2 precipitation inhibitor to achieve the set SiO2 precipitation inhibitor concentration.Type: ApplicationFiled: September 27, 2018Publication date: March 28, 2019Inventors: Hideaki Sato, Hiroki Ohno, Yoshinori Nishiwaki, Takao Inada, Hisashi Kawano
-
Publication number: 20190096711Abstract: A substrate processing apparatus and a substrate processing method capable of suppressing precipitation of a silicon oxide while improving selectivity for etching a silicon nitride film are provided. The substrate processing apparatus includes a substrate processing tub, a phosphoric acid processing liquid supply unit, a circulation path, a SiO2 precipitation inhibitor supply unit and a mixing unit. The phosphoric acid processing liquid supply unit is configured to supply a phosphoric acid processing liquid used in performing an etching processing in the substrate processing tub. The circulation path is configured to circulate the phosphoric acid processing liquid supplied into the substrate processing tub. The SiO2 precipitation inhibitor supply unit is configured to supply a SiO2 precipitation inhibitor into the circulation path.Type: ApplicationFiled: September 27, 2018Publication date: March 28, 2019Inventors: Hiroki Ohno, Hideaki Sato, Takao Inada, Hisashi Kawano, Yoshinori Nishiwaki, Takahiko Otsu
-
Patent number: 10207349Abstract: In the present disclosure, the high-pressure chamber includes a chamber main body including a flat rectangular parallelepiped block of a metal which is formed with a flat cavity that serves as a substrate processing space in which a processing using a high-pressure fluid is performed on a substrate, and the substrate processing space being formed by machining the block from one of faces of the block other than the widest face towards another face opposing thereto. In a case where the cavity is constituted as a through hole, the though hole is provided with a cover configured to open or close the cavity on one side of the through hole, and a second block configured to air-tightly seal the cavity on the other side.Type: GrantFiled: November 21, 2013Date of Patent: February 19, 2019Assignee: Tokyo Electron LimitedInventors: Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima, Hiroaki Inadomi
-
Patent number: 10199240Abstract: A substrate processing method and apparatus which can remove an anti-drying liquid, which has entered a three-dimensional pattern with recessed portions formed in a substrate, in a relatively short time. The substrate processing method includes the steps of: carrying a substrate, having a three-dimensional pattern formed in a surface, into a processing container, said pattern being covered with an anti-drying liquid that has entered the recessed portions of the pattern; heating the substrate and supplying a pressurizing gas or a fluid in a high-pressure state into the processing container, thereby forming a high-pressure atmosphere in the processing container before the anti-drying liquid vaporizes to such an extent as to cause pattern collapse and bringing the anti-drying liquid into a high-pressure state while keeping the liquid in the recessed portions of the pattern; and thereafter discharging a fluid in a high-pressure state or a gaseous state from the processing container.Type: GrantFiled: May 29, 2012Date of Patent: February 5, 2019Assignees: Toshiba Memory Corporation, Tokyo Electron LimitedInventors: Hidekazu Hayashi, Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Kazuyuki Mitsuoka, Mitsuaki Iwashita, Takehiko Orii, Gen You, Hiroki Ohno, Takayuki Toshima
-
Patent number: 10115609Abstract: Disclosed is a separation and regeneration apparatus including: a supercritical processing unit configured to generate a mixed gas including a first fluorine-containing organic solvent having a first boiling point and a second fluorine-containing organic solvent having a second boiling point lower than the first boiling point; and a distillation tank configured to store hot water having a temperature between the first boiling point and the second boiling point, in which the mixed gas is input into the hot water to be separated into the first fluorine-containing organic solvent in a liquid state and the second fluorine-containing organic solvent in a gas state, in which an introduction line configured to guide the mixed gas from the supercritical processing unit to the distillation tank is provided and a distal end of the introduction line is disposed in the hot water.Type: GrantFiled: March 11, 2015Date of Patent: October 30, 2018Assignee: Tokyo Electron LimitedInventors: Kazuyuki Mitsuoka, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
-
Patent number: 10096462Abstract: A substrate processing method and apparatus for preventing evaporation of an anti-drying fluorine-containing organic solvent from a substrate during transportation of the substrate into a processing container and can prevent decomposition of a fluorine-containing organic solvent in the processing container. A substrate, the surface of which is covered with a first fluorine-containing organic solvent, is carried into a processing container. The first fluorine-containing organic solvent is removed from the substrate surface by forming a high-pressure fluid atmosphere of a mixture of the first fluorine-containing organic solvent and a second fluorine-containing organic solvent, having a lower boiling point than the first fluorine-containing organic solvent, in the processing container e.g. by supplying a high-pressure fluid of the second fluorine-containing organic solvent into the processing container.Type: GrantFiled: July 15, 2013Date of Patent: October 9, 2018Assignees: Toshiba Memory Corporation, Tokyo Electron LimitedInventors: Hidekazu Hayashi, Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
-
Publication number: 20180254200Abstract: A substrate processing apparatus according to an exemplary embodiment to the present disclosure includes: a main body which has therein a processing space capable of accommodating the substrate; a holding unit which holds the substrate in the main body; a supply unit which is provided at a side of the substrate held by the holding unit and supplies the processing fluid into the processing space; a discharge unit which discharges the processing fluid from an inside of the processing space; and a flow path limiting unit which limits a lower end of a flow path at an upstream side which is formed while the processing fluid flows from the supply unit to the discharge unit. Further, an upper end of the flow path limiting unit is disposed at a position higher than the upper surface of the substrate held by the holding unit.Type: ApplicationFiled: February 28, 2018Publication date: September 6, 2018Inventors: Yosuke Kawabuchi, Gentaro Goshi, Keisuke Egashira, Hiroki Ohno, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Shotaro Kitayama
-
Patent number: 10046370Abstract: The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.Type: GrantFiled: April 19, 2017Date of Patent: August 14, 2018Assignee: Tokyo Electron LimitedInventors: Gentaro Goshi, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
-
Publication number: 20180158699Abstract: Disclosed is a method of cleaning a substrate processing apparatus in which a substrate having a surface wet by a liquid is brought into contact with a supercritical fluid so as to perform a drying process of drying the substrate. The method includes a cleaning gas filling process and an exhausting process. The cleaning gas filling process fills a cleaning gas containing isopropyl alcohol in the substrate processing apparatus. The exhausting process exhausts the cleaning gas from an inside of the substrate processing apparatus after the cleaning gas filling process.Type: ApplicationFiled: November 29, 2017Publication date: June 7, 2018Inventors: Shotaro Kitayama, Gentaro Goshi, Hiroki Ohno, Keisuke Egashira, Yosuke Kawabuchi, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Hiromi Kiyose
-
Publication number: 20180138035Abstract: During at least part of a time period for a pressure increasing step of increasing a pressure inside a processing container from a pressure lower than a critical pressure of a processing fluid to a pressure higher than the critical pressure, pressure increasing is performed by supplying the processing fluid into the processing container from a fluid supply source while discharging the processing fluid from the processing container at a controlled discharge flow rate. Particles attached to the surfaces of members inside the processing container travel upward by the supply of the processing fluid into the processing container from the fluid supply source. The particles are discharged along with the processing fluid from the processing container.Type: ApplicationFiled: November 16, 2017Publication date: May 17, 2018Inventors: Hiroki Ohno, Keisuke Egashira, Gentaro Goshi, Yosuke Kawabuchi, Shotaro Kitayama, Hiroshi Marumoto, Takuro Masuzumi, Kento Tsukano, Hiromi Kiyose