Patents by Inventor Hiromi Yuasa

Hiromi Yuasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7948717
    Abstract: A magneto-resistance effect element includes a first magnetic layer of which a magnetization direction is fixed; a second magnetic layer of which a magnetization direction is fixed; an intermediate layer which is provided between the first magnetic layer and the second magnetic layer; and a pair of electrodes for flowing a current perpendicular to a film surface of the resultant laminated body comprised of the first magnetic layer, the second magnetic layer and the intermediate layer. The intermediate layer includes insulating portions and metallic portions containing at least one selected from the group consisting of Fe, Co, Ni, Cr and the metallic portions are contacted with the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji
  • Publication number: 20110049090
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a magnetic recording layer, an etching protection layer, and an adhesion layer on a substrate, applying a resist on the adhesion layer, transferring patterns of protrusions and recesses on the resist by imprinting to form a resist pattern, patterning the adhesion layer by using the resist pattern as a mask, patterning the etching protection layer by using the resist pattern as a mask, etching the magnetic recording layer by using patterns of the adhesion layer and the etching protection layer as masks to form patterns of protrusions and recesses of the magnetic recording layer and removing the pattern of the adhesion layer, stripping the pattern of the etching protection layer, and exposing the patterns of protrusions and recesses of the magnetic recording layer to a non-ionized reducing gas.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiyuki KAMATA, Hiromi YUASA, Shuichi MURAKAMI, Hideaki FUKUZAWA, Michiko HARA, Yoshihiko FUJI, Masatoshi SAKURAI
  • Patent number: 7897201
    Abstract: A method is for manufacturing a magnetoresistance effect element having a magnetization fixed layer, a non-magnetic intermediate layer, and a magnetization free layer being sequentially stacked. The method includes: forming at least a part of a magnetic layer that is to become either one of the magnetization fixed layer and the magnetization free layer; forming a function layer including at least one of an oxide, a nitride, and a fluoride on the part of the magnetic layer; and removing a part of the function layer by exposing the function layer to either one of an ion beam and plasma irradiation.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Patent number: 7898774
    Abstract: A spin valve type magnetoresistive effect element for vertical electric conduction includes a magnetoresistive effect film in which a resistance adjustment layer made of a material containing conductive carriers not more than 1022/cm3 is inserted. Thus the resistance value of a portion in change of spin-relied conduction is raised to an adequate value, thereby to increase the resistance variable amount.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 7897274
    Abstract: A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a?75 at %, b?75 at %, and c?63 at %), or formed of an alloy having a body-centered cubic crystal structure.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Masatoshi Yoshikawa, Yuzo Kamiguchi, Hitoshi Iwasaki, Masashi Sahashi
  • Publication number: 20110019312
    Abstract: A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.
    Type: Application
    Filed: September 10, 2010
    Publication date: January 27, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideaki FUKUZAWA, Masahiro Takashita, Hiromi Yuasa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Publication number: 20100323104
    Abstract: An example method for manufacturing a magneto-resistance effect element involves irradiating inert gas ions to enhance an adhesive force between an area around an oxide layer and a metallic layer.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 23, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 7843669
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of nitride, oxinitride, phosphide, and fluoride.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 30, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hiromi Fuke, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 7821748
    Abstract: A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Masahiro Takashita, Hiromi Yuasa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Patent number: 7810228
    Abstract: An example method for manufacturing a magneto-resistance effect element involves irradiating inert gas ions to enhance an adhesive force between an area around an oxide layer and a metallic layer.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 7808747
    Abstract: A magnetoresistive effect element includes a fixed magnetization layer; a free magnetization layer; a nonmagnetic spacer layer between the fixed magnetization layer and the free magnetization layer; and an insertion layer disposed on an opposite side of the free magnetization layer from the nonmagnetic spacer layer, wherein the first insulating layer has an oxide, a nitride, or an oxynitride including at least one kind of element selected from a group constituted of Al (aluminum), Si (silicon), Mg (magnesium), Ta (tantalum) and Zn (zinc) as a major constituent, and the insertion layer has an oxide, a nitride, or an oxynitride including at least one kind of element selected from a group constituted of Al (aluminum), Si (silicon), Mg (magnesium), Ta (tantalum) and Zn (zinc) as a major constituent.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7808330
    Abstract: A high-frequency oscillator includes a high-frequency oscillation element having a magnetization pinned layer whose magnetization direction is pinned substantially in one direction, an oscillation layer formed of a magnetic material which generates a high-frequency oscillation phenomenon when a current is supplied, an intermediate layer provided between the magnetization pinned layer and the oscillation layer, the intermediate layer having an insulation layer and current paths which pass through the insulation layer in a thickness direction, and a pair of electrodes which supply a current perpendicularly to a plane of a stacked film including the magnetization pinned layer, the intermediate layer and the oscillation layer.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Publication number: 20100226048
    Abstract: A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.
    Type: Application
    Filed: September 22, 2006
    Publication date: September 9, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideaki Fukuzawa, Masahiro Takashita, Hiromi Yuasa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Patent number: 7791843
    Abstract: There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuuzo Kamiguchi, Hiromi Yuasa, Tomohiko Nagata, Hiroaki Yoda, Katsuhiko Koui, Masatoshi Yoshikawa, Hitoshi Iwasaki, Masashi Sahashi, Masayuki Takagishi
  • Patent number: 7785662
    Abstract: There is provided a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer arranged between the magnetization pinned layer and the magnetization free layer and current paths passing through the insulating layer. The method includes, in producing the spacer layer, depositing a first non-magnetic metal layer forming the current paths, depositing a second metal layer to be converted into the insulating layer on the first non-magnetic metal layer, and performing two stages of oxidation treatments in which a partial pressure of an oxidizing gas in a first oxidation treatment is set to 1/10 or less of a partial pressure of an oxidizing gas in a second oxidation treatment, and the second metal layer being irradiated with an ion beam or a RF plasma of a rare gas in the first oxidation treatment.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7776387
    Abstract: A method for manufacturing a magneto-resistance effect element includes: forming a first magnetic layer; forming a first metallic layer, on the first magnetic layer, mainly containing an element selected from the group consisting of Cu, Au, Ag; forming a functional layer, on the first metallic layer, mainly containing an element selected from the group consisting of Si, Hf, Ti, Mo, W, Nb, Mg, Cr and Zr; forming a second metallic layer, on the functional layer, mainly containing Al; treating the second metallic layer by means of oxidizing, nitriding or oxynitiriding so as to form a current confined layer including an insulating layer and a current path with a conductor passing a current through the insulating layer; and forming, on the current confined layer, a second magnetic layer.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: August 17, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa
  • Patent number: 7742262
    Abstract: A magnetoresistive element includes a first magnetic layer a magnetization direction of which is substantially pinned, a second magnetic layer a magnetization direction of which varies depending on an external field, a magnetic spacer layer provided between the first magnetic layer and the second magnetic layer, and electrodes which supply a current perpendicularly to a plane of a stacked film including the first magnetic layer, the magnetic spacer layer and the second magnetic layer. In this element, the magnetization directions of the first and the second magnetic layers are substantially orthogonal at zero external field.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7719799
    Abstract: A magnetoresistive element has a first magnetic layer and a second magnetic layer separate from each other, the first magnetic layer and the second magnetic layer each having a magnetization whose direction is substantially pinned, and a non-magnetic conductive layer formed in contact with the first magnetic layer and the second magnetic layer and electrically connecting the first and second magnetic layers, the non-magnetic conductive layer forming a path of spin-polarized electrons from one of the magnetic layer to the other magnetic layer, the non-magnetic conductive layer comprising a portion located between the first magnetic layer and the second magnetic layer, the portion being a sensing area.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 18, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki
  • Publication number: 20100091414
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of krypton ions, krypton plasma, krypton radicals, xenon ions, xenon plasma and xenon radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Publication number: 20100091412
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of helium ions, helium plasma, helium radicals, neon ions, neon plasma and neon radicals on the film submitted to the first treatment.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicants: KABUSHIKI KAISHA TOSHIBA, TDK CORPORATION
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck