Patents by Inventor Hiroshi Imoto
Hiroshi Imoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230028855Abstract: Various variable planar pouch battery pressure optimization systems are presented. The system may include a first and second plate, between which a planar pouch battery cell is installed. Multiple pressure application components may be individually controlled to apply varying pressure to the first and second plate. Various pressure patterns may be tested in order to determine a pressure pattern that optimizes at least one electrical characteristic of the planar pouch battery cell.Type: ApplicationFiled: May 4, 2022Publication date: January 26, 2023Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Patent number: 11522212Abstract: A battery cell having a layered pressure homogenizing soft medium for liquid/solid state Li-ion rechargeable batteries. The battery cell of the present technology includes one or more battery pouches, a pressure mechanism external to the battery pouches that applies a pressure to the battery pouches, and a layered pressure homogenizing soft medium that is displaced between the battery pouches and the pressure mechanism. By using a number of pressure homogenizing medium layers, each with a specific range of thickness and within a range of physical properties, the battery pouches displaced between the pressure homogenizing medium layers are evenly pressurized by the mediums due to pressure applied by the pressure mechanism to within a desired range of pressure. The pressure applied to the battery pouches by the pressure homogenizing medium is monitored by a pressure sensor, such as a two-dimensional pressure sensor.Type: GrantFiled: September 22, 2019Date of Patent: December 6, 2022Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Patent number: 11515539Abstract: Various arrangements of an anode-free battery cell are presented herein. The battery cell can include a lithium ion buffer layer that is located between a electrolyte and an anode current collector. Lithium ions may be stored within the lithium ion buffer layer when the battery cell is charged, which can decrease an amount of swelling within the battery cell.Type: GrantFiled: July 2, 2021Date of Patent: November 29, 2022Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Patent number: 11462804Abstract: Various battery cell arrangements are presented herein. The battery cell can include an anode current collector. The battery cell can include a carbon-based anode coating layer that coats the anode current collector. A first bond between the anode current collector and the anode coating layer may have a first adhesion strength. The battery cell also includes a cathode, a separator layer that contacts the cathode, and a separator coating layer. The separator coating layer can be positioned between the anode coating layer and the separator layer. A second bond between the separator coating material and the anode coating material has a second adhesion strength. The second adhesion strength of the second bond may be greater than the first adhesion strength of the first bond.Type: GrantFiled: January 8, 2019Date of Patent: October 4, 2022Assignee: TeraWatt Technology Inc.Inventors: Hiroshi Imoto, Ken Ogata, Juichi Arai, Yang Yang
-
Patent number: 11335943Abstract: Various variable planar pouch battery pressure optimization systems are presented. The system may include a first and second plate, between which a planar pouch battery cell is installed. Multiple pressure application components may be individually controlled to apply varying pressure to the first and second plate. Various pressure patterns may be tested in order to determine a pressure pattern that optimizes at least one electrical characteristic of the planar pouch battery cell.Type: GrantFiled: August 1, 2019Date of Patent: May 17, 2022Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20220135638Abstract: The present disclosure provides GIP receptor agonist peptide compounds having an activating action on GIP receptors and use of the GIP receptor agonist peptide as a medicament for the treatment and/or prevention of diabetes, obesity, emesis, or a symptom or condition associated with diabetes, obesity, or emesis. Specifically, a GIP receptor agonist peptide containing a sequence represented by the formula (I) or a salt thereof, and a medicament comprising the same are provided. Formula I: P1-A1-A2-A3-A4-A5-A6-A7-A8-A9-A10-A11-A12-A13-A14-A15-A16-A17-A18-A19-A20-A21-A22-A23-A24-A25-A26-A27-A28-A29-A30-A341-A32-A33-A34-A35-A36-A37-A38-A39-A40-A41-P2 (SEQ ID NO: 4), or a salt thereof, wherein each symbol is as defined herein, with the proviso that the GIP receptor agonist peptide does not have an amino acid sequence as provided in SEQ ID NOs: 4-569 disclosed in PCT/JP2018/013540.Type: ApplicationFiled: September 24, 2019Publication date: May 5, 2022Inventors: Hiroshi IMOTO, Mari ADACHI, Yoko KANEMATSU, Taiji ASAMI, Ayumu NIIDA, Naoki NISHIZAWA, Derek Cecil COLE, Mack FLINSPACH, Nick SCORAH, Abhijit Suresh BHAT
-
Patent number: 11271253Abstract: Various arrangements for creating a cylindrical anti-dendrite anode-free solid-state battery are presented. An anti-dendrite layer may be layered between an anode current collector layer and the cathode layer. A layered stack may be created that comprises a dry separator layer, a cathode layer layered with a cathode current collector layer, and the anti-dendrite layer layered with the anode current collector layer. The layered stack may be rolled into a cylindrical jelly roll. The rolled layered stack may be inserted into a pouch. A liquid electrolyte mixture may be added into the pouch. The liquid electrolyte mixture can permeate the dry separator layer. Heat can be applied to the pouch that causes the liquid electrolyte mixture to become a gel. The rolled layered stack can then be removed from the pouch and inserted into a cylindrical battery cell canister.Type: GrantFiled: July 29, 2019Date of Patent: March 8, 2022Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Jungho Kim, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210336270Abstract: Various arrangements of an anode-free battery cell are presented herein. The battery cell can include a lithium ion buffer layer that is located between a electrolyte and an anode current collector. Lithium ions may be stored within the lithium ion buffer layer when the battery cell is charged, which can decrease an amount of swelling within the battery cell.Type: ApplicationFiled: July 2, 2021Publication date: October 28, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210226249Abstract: Provided herein are various battery cell embodiments. A battery cell can have a solid electrolyte. The electrolyte can be arranged within the cavity. The battery cell can have a cathode disposed within the cavity along a first side of the electrolyte. The battery cell can have a functional layer disposed within the cavity along a second side of the electrolyte. A first side of the functional layer can be in contact with a second side of the electrolyte. The functional layer can form an alloy with lithium material received via the electrolyte. The battery cell can have a scaffold layer disposed within the cavity along a second side of the functional layer.Type: ApplicationFiled: April 5, 2021Publication date: July 22, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Hiroshi Imoto
-
Patent number: 11069897Abstract: Various arrangements of an anode-free solid-state battery cell are presented herein. The battery cell can include a lithium ion buffer layer that is located between a solid-state electrolyte and an anode current collector. Lithium ions may be stored within the lithium ion buffer layer when the battery cell is charged, which can decrease an amount of swelling within the battery cell.Type: GrantFiled: May 16, 2019Date of Patent: July 20, 2021Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210175534Abstract: Various arrangements for compressing a cylindrical battery cell are presented herein. The cylindrical battery cell may be wrapped in a buffer material. The buffer material may then be compressed using a compression mechanism. The buffer material may uniformly distribute pressure applied to the buffer material to a curved sidewall of the cylindrical battery cell.Type: ApplicationFiled: February 19, 2021Publication date: June 10, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Patent number: 11024877Abstract: Provided herein are apparatus, systems, and methods of powering electric vehicles. A battery pack can be disposed in an electric vehicle to power the electric vehicle. The apparatus can include a battery cell. A battery cell can have a housing that defines a cavity. The battery cell can have a solid electrolyte. The electrolyte can be arranged within the cavity. The battery cell can have a cathode disposed within the cavity along a first side of the electrolyte. The battery cell can have a functional layer disposed within the cavity along a second side of the electrolyte. A first side of the functional layer can be in contact with a second side of the electrolyte. The functional layer can form an alloy with lithium material received via the electrolyte. The battery cell can have a scaffold layer disposed within the cavity along a second side of the functional layer.Type: GrantFiled: December 4, 2018Date of Patent: June 1, 2021Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Hiroshi Imoto
-
Publication number: 20210104747Abstract: A battery cell having a cathode, an anode, an electrolyte, and a dendrite absorber material. The dendrite absorber material reacts with lithium dendrite that forms on the anode after cycling the battery cell through charging and discharging cycles. The dendrite absorption material interacts with the lithium dendrite via lithium fusion. As a result of the lithium fusion, the dendrite absorber forms a lithium alloy and prevents expansion of the dendrite past the dendrite absorber material within the cell battery. This helps prevent short-circuiting between the anode and cathode due to lithium dendrite, which would cause performance degradation and safety issues such as fires.Type: ApplicationFiled: October 8, 2019Publication date: April 8, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210091403Abstract: A battery cell having a layered pressure homogenizing soft medium for liquid/solid state Li-ion rechargeable batteries. The battery cell of the present technology includes one or more battery pouches, a pressure mechanism external to the battery pouches that applies a pressure to the battery pouches, and a layered pressure homogenizing soft medium that is displaced between the battery pouches and the pressure mechanism. By using a number of pressure homogenizing medium layers, each with a specific range of thickness and within a range of physical properties, the battery pouches displaced between the pressure homogenizing medium layers are evenly pressurized by the mediums due to pressure applied by the pressure mechanism to within a desired range of pressure. The pressure applied to the battery pouches by the pressure homogenizing medium is monitored by a pressure sensor, such as a two-dimensional pressure sensor.Type: ApplicationFiled: September 22, 2019Publication date: March 25, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Patent number: 10957935Abstract: Various arrangements for compressing a cylindrical battery cell are presented herein. The cylindrical battery cell may be wrapped in a buffer material. The buffer material may then be compressed using a compression mechanism. The buffer material may uniformly distribute pressure applied to the buffer material to a curved sidewall of the cylindrical battery cell. The cylindrical battery cell may be heated while the buffer material is being compressed using the compression mechanism.Type: GrantFiled: May 14, 2019Date of Patent: March 23, 2021Assignee: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210074999Abstract: Various embodiments and methods related to solid-state battery and associated solid-state battery anodes are presented. The solid-state battery may include a solid-state battery cathode, a solid-state battery anode, and a solid electrolyte separator. The solid electrolyte separator may be positioned between the solid-state battery cathode and the solid-state battery anode to form the solid-state battery. The solid-state battery anode may include a second solid electrolyte powder, a plurality of graphite particles, and a plurality of conductive fibers. The plurality of conductive fibers may be interspersed between the plurality of graphite particles. The plurality of graphite particles may be characterized by a D50 diameter of less than 20 ?m. The plurality of graphite particles may be coated with a solid-state interfacial coating. The solid-state interfacial coating may include a low-crystallinity carbon.Type: ApplicationFiled: September 5, 2019Publication date: March 11, 2021Applicant: TeraWatt Technology Inc.Inventors: Hiroshi Imoto, Yang Yang
-
Publication number: 20210036328Abstract: In various embodiments, an anti-dendrite anode-free solid-state battery (SSB) are presented. The SSB can include a cathode layer; an anode current collector layer; and a lithium gel separator layer between the cathode layer and the anode current collector layer. An anti-dendrite layer may also be present located between the lithium gel separator layer and the anode current collector layer. The anti-dendrite layer can help discourage dendrite formation.Type: ApplicationFiled: July 29, 2019Publication date: February 4, 2021Applicants: Chongqing Jinkang New Energy Automobile Co., Ltd., SF Motors Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Jungho Kim, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210036363Abstract: Various arrangements of a phase-change electrolyte for a solid state battery (SSB) are presented. A phase-change electrolyte separator layer can include a non-reactive scaffold that has open spaces. A lithium liquid may be used that transitions into a lithium gel, the lithium liquid can include a mixture of a polymer additive, a cross-linker additive, a lithium salt; and a solvent. The lithium liquid with the polymer additive and the cross-linker additive can be filled into the open spaces within the non-reactive scaffold. The lithium liquid can then be converted into a lithium gel within the non-reactive scaffold following an application of heat while the lithium liquid is within the open spaces within the non-reactive scaffold.Type: ApplicationFiled: July 29, 2019Publication date: February 4, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210036357Abstract: Various variable planar pouch battery pressure optimization systems are presented. The system may include a first and second plate, between which a planar pouch battery cell is installed. Multiple pressure application components may be individually controlled to apply varying pressure to the first and second plate. Various pressure patterns may be tested in order to determine a pressure pattern that optimizes at least one electrical characteristic of the planar pouch battery cell.Type: ApplicationFiled: August 1, 2019Publication date: February 4, 2021Applicant: TeraWatt Technology, IncInventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
-
Publication number: 20210036377Abstract: Various arrangements for creating a cylindrical anti-dendrite anode-free solid- state battery are presented. An anti-dendrite layer may be layered between an anode current collector layer and the cathode layer. A layered stack may be created that comprises a dry separator layer, a cathode layer layered with a cathode current collector layer, and the anti- dendrite layer layered with the anode current collector layer. The layered stack may be rolled into a cylindrical jelly roll. The rolled layered stack may be inserted into a pouch. A liquid electrolyte mixture may be added into the pouch. The liquid electrolyte mixture can permeate the dry separator layer. Heat can be applied to the pouch that causes the liquid electrolyte mixture to become a gel. The rolled layered stack can then be removed from the pouch and inserted into a cylindrical battery cell canister.Type: ApplicationFiled: July 29, 2019Publication date: February 4, 2021Applicant: TeraWatt Technology Inc.Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Jungho Kim, Masatsugu Nakano, Hiroshi Imoto