Patents by Inventor Hiroto Tamaki

Hiroto Tamaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150325760
    Abstract: A light emitting device includes a light emitting element, a terminal substrate and a fixing member. The light emitting element is a semiconductor laminate having a first semiconductor layer, a light emitting layer, and a second semiconductor layer that are laminated in that order, a first electrode connected to the first semiconductor layer, and a second electrode connected to the second semiconductor layer. The terminal substrate includes a pair of terminals connected to the first electrode and the second electrode, and an insulator layer that fixes the terminals. At least a part of the outer edges of the terminal substrate is disposed more to a center of the light emitting device than the outer edges of the semiconductor laminate. The fixing member fixes the light emitting element and the terminal substrate.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 12, 2015
    Applicant: NICHIA CORPORATION
    Inventors: Ryoma SUENAGA, Hiroto TAMAKI
  • Publication number: 20150295146
    Abstract: A light emitting device includes at least one semiconductor light emitting element, and a wavelength conversion layer which is formed on a surface of the semiconductor light emitting element and which includes a resin layer containing a wavelength conversion member for converting a wavelength of light emitted from the semiconductor light emitting element. The wavelength conversion layer covers an upper surface or the upper surface and a side surface of the semiconductor light emitting element. A content of an inorganic material including the wavelength conversion member, or a content of an inorganic material including the wavelength conversion member and an inorganic filler, in the resin layer is 30% by mass or more and 99% by mass or less.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 15, 2015
    Inventors: Takeshi IKEGAMI, Hiroto TAMAKI
  • Patent number: 9093620
    Abstract: Provided is a light emitting device having a phosphor layer on a surface of a semiconductor light emitting element and achieving an even light distribution color, and a method of manufacturing the same. A method of manufacturing a light emitting device includes arranging a plurality of semiconductor light emitting elements spaced apart from each other on an expandable sheet, spraying a slurry containing a solvent, a thermosetting resin, and phosphor particles, onto an entire surface of the sheet having the arranged semiconductor light emitting elements to form a resin layer, pre-curing the resin layer, disuniting the resin layer formed on the surface of the semiconductor light emitting element from the resin layer formed on the sheet by expanding the sheet, and main curing the resin layer, which steps are performed in this order.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: July 28, 2015
    Assignee: NICHIA CORPORATION
    Inventors: Takeshi Ikegami, Hiroto Tamaki
  • Publication number: 20150207046
    Abstract: Provided is a light emitting device having a phosphor layer on a surface of a semiconductor light emitting element and reducing unevenness in light distribution color, and a method of manufacturing the same. A light emitting device 100 includes a light emitting element 20 with a supporting body which is composed of a semiconductor light emitting element 1 and a supporting body 10, and a phosphor layer 7 which continuously covers an upper surface and side surfaces of the semiconductor light emitting element 1, and side surfaces of the supporting body 10. The phosphor layer 7 is configured such that at least a lower portion of the side surface of the supporting body 10 is thinner than the upper surface and the side surface of the semiconductor light emitting element 1.
    Type: Application
    Filed: December 5, 2014
    Publication date: July 23, 2015
    Inventors: Takeshi IKEGAMI, Tadao HAYASHI, Hiroto TAMAKI
  • Publication number: 20150181711
    Abstract: Discoloration is suppressed in a wiring substrate including a conductive member including silver. A wiring substrate includes a ceramic layer and a conductive member including a conductive layer disposed on an upper surface of the ceramic layer. The conductive member includes silver and at least a portion of an upper surface of the conductive layer is covered with a covering layer. The covering layer includes an inorganic reflecting layer and a glass layer stacked on the inorganic reflecting layer.
    Type: Application
    Filed: December 24, 2014
    Publication date: June 25, 2015
    Applicant: NICHIA CORPORATION
    Inventors: Takuya NAKABAYASHI, Hiroto TAMAKI
  • Publication number: 20150171281
    Abstract: Provided is a small and thin light emitting device which has no connection failure, a high life, high performance and good light extraction efficiency. The light emitting device includes a base body comprising a base material having a pair of connection terminals on at least a first main surface, a light emitting element connected to the connection terminals, and a sealing member that seals the light emitting element, wherein the base material has a linear expansion coefficient within ±10 ppm/° C. of the linear expansion coefficient of the light emitting element.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Takuya NAKABAYASHI, Takeshi IKEGAMI, Tadaaki IKEDA, Tadao HAYASHI, Hiroto TAMAKI
  • Publication number: 20150159836
    Abstract: A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
    Type: Application
    Filed: January 6, 2015
    Publication date: June 11, 2015
    Inventors: Hiroto TAMAKI, Takayoshi WAKAKI, Tadao HAYASHI, Yoshiki SATO, Daisuke OYAMATSU, Takafumi SUGIYAMA, Takao KOSUGI
  • Publication number: 20150129923
    Abstract: A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Applicant: NICHIA CORPORATION
    Inventors: Masato FUJITOMO, Hiroto TAMAKI, Shinji NISHIJIMA, Yuichiro TANDA, Tomohide MIKI
  • Publication number: 20150129918
    Abstract: Provided is a light emitting device having a phosphor layer on a surface of a semiconductor light emitting element and achieving an even light distribution color, and a method of manufacturing the same. A method of manufacturing a light emitting device includes arranging a plurality of semiconductor light emitting elements spaced apart from each other on an expandable sheet, spraying a slurry containing a solvent, a thermosetting resin, and phosphor particles, onto an entire surface of the sheet having the arranged semiconductor light emitting elements to form a resin layer, pre-curing the resin layer, disuniting the resin layer formed on the surface of the semiconductor light emitting element from the resin layer formed on the sheet by expanding the sheet, and main curing the resin layer, which steps are performed in this order.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventors: Takeshi IKEGAMI, Hiroto TAMAKI
  • Patent number: 8994259
    Abstract: A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Nichia Corporation
    Inventors: Hiroto Tamaki, Takayoshi Wakaki, Tadao Hayashi, Yoshiki Sato, Daisuke Oyamatsu, Takafumi Sugiyama, Takao Kosugi
  • Patent number: 8987853
    Abstract: A light emitting device includes a base body forming a recess defined by a bottom surface and a side wall thereof, a conductive member whose upper surface being exposed in the recess and whose lower surface forming an outer surface, a protruding portion disposed in the recess, a light emitting element mounted in the recess and electrically connected to the conductive member, and a sealing member disposed in the recess to cover the light emitting element. The base body has a bottom portion and a side wall portion integrally formed of a resin, an inner surface of the side wall portion is the side wall defining the recess and has a curved portion, and the protruding portion is disposed in close vicinity to the curved surface. With this arrangement, a thin and small-sized light emitting device excellent in light extraction efficiency and reliability can be obtained.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Nichia Corporation
    Inventors: Shinji Nishijima, Tomohide Miki, Hiroto Tamaki
  • Patent number: 8975100
    Abstract: A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 10, 2015
    Assignee: Nichia Corporation
    Inventors: Masato Fujitomo, Hiroto Tamaki, Shinji Nishijima, Yuichiro Tanda, Tomohide Miki
  • Patent number: 8916775
    Abstract: A shielded cable includes at least one electric wire and a shielding layer covering the electric wire, which is formed by helically winding a tape-shaped shield member. The shielding layer is formed by winding the tape-shaped shield member laminating and integrating an insulating layer and a metal layer such that one side end portions along a lengthwise direction overlap with each other to form an overlapping portion and a non-overlapping portion of the shield member. A first one side end portion forming the overlapping portion is a folding portion formed by folding the insulating layer inward, and a second one side end portion forming the non-overlapping portion is a non-folding portion that is not folded. In the overlapping portion, the metal layer at the folding portion and the metal layer at the non-folding portion are electrically connected. The shielding layer has notches formed along the second one side end portion.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 23, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroto Tamaki
  • Publication number: 20140366369
    Abstract: A method for manufacturing a circuit board constituted by a light emitting device and a mounting board includes the steps of: conveying the light emitting device onto the mounting board in a state in which a top face is chucked by a nozzle so that the nozzle and an exposed part of a first terminal part of the light emitting device are in contact; and placing the light emitting device onto the mounting board so that the first terminal part and a wiring component are in contact in a state in which the top face is chucked by the nozzle.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 18, 2014
    Inventors: Ryohei YAMASHITA, Tomohide MIKI, Hiroto TAMAKI
  • Patent number: 8900710
    Abstract: A light-emitting device includes a light-emitting element on a molded part. The molded part is formed by molding and curing a thermosetting epoxy resin composition comprising (A) the reaction product of a triazine derived epoxy resin with an acid anhydride, (B) an internal parting agent having m.p. 50-90° C., (C) a reflective agent, (D) an inorganic filler, and (E) a curing catalyst.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: December 2, 2014
    Assignee: Nichia Corporation
    Inventors: Masaki Hayashi, Hiroto Tamaki, Masafumi Kuramoto, Tomohide Miki, Takayuki Sano, Tomohisa Kishimoto
  • Patent number: 8853933
    Abstract: A light emitting device comprises a light emitting element and a package constituted by a molded article and a first lead and a second lead embedded in the molded article, and having a bottom face, a top face disposed opposite to the bottom face, and a light emission face connected to the bottom face and the top face. The first lead has a first terminal part exposed at the bottom face exposed at the top face. The exposed part is provided more toward the center of the package than the first terminal part.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 7, 2014
    Assignee: Nichia Corporation
    Inventors: Ryohei Yamashita, Tomohide Miki, Hiroto Tamaki
  • Publication number: 20140252401
    Abstract: A lead frame of high quality which can endure direct bonding to a light emitting element, and a light emitting device of high reliability which utilizing the lead frame. A lead frame includes a clad material which is a stacked layer of at least a first metal layer and a second metal layer, the second metal layer made of a metal which is different from the metal of the first metal layer, and a through portion. In the through-portion, an end surface of the first metal layer and an end surface of the second metal layer are covered with a plated layer. The end surface of either the first metal layer or the second metal layer protrudes farther into the through-portion than the end surface of the other metal layer.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: NICHIA CORPORATION
    Inventors: Takuya NAKABAYASHI, Yoshitaka BANDO, Hiroto TAMAKI
  • Publication number: 20140252582
    Abstract: A lead frame of high quality which can endure direct bonding to a semiconductor element, and a semiconductor device of high reliability which utilizing the lead frame. A lead frame includes a plurality of connected units, each unit including a pair of lead portions arranged spaced apart and opposite from each other, for mounting a semiconductor element and electrically connecting to a pair of electrodes of the semiconductor element respectively. The lead portions respectively include an element mounting region arranged on a surface thereof to mount the semiconductor element, and a groove extending from opposing end surfaces of each of the pair of lead portions, in a direction away from the end surfaces and bending in a surrounding manner along outer periphery of the element mounting region.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: NICHIA CORPORATION
    Inventors: Takuya NAKABAYASHI, Yoshitaka BANDO, Hiroto TAMAKI
  • Publication number: 20140252574
    Abstract: A lead frame of high quality which can endure direct bonding to the electrodes of a semiconductor element and a metal member, and a semiconductor device of high reliability which utilizing the lead frame. The lead frame includes a pair of lead frame portions which are arranged spaced apart from and opposite to each other to be electrically connected to a pair of electrodes of a semiconductor element respectively, and a pair of support bars which are arranged spaced apart from the lead portions and extending from a side of either one of the lead portions to a side of the other lead portion.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Applicant: NICHIA CORPORATION
    Inventors: Takuya NAKABAYASHI, Yoshitaka BANDO, Hiroto TAMAKI
  • Publication number: 20140247574
    Abstract: A printed circuit board includes a printed circuit board, a semiconductor device mounted on the printed circuit board, a capacitor element mounted on the printed circuit board 2, a ground conductor plane to which a ground terminal of the semiconductor device is connected, and first and second power source conductor planes which are arranged so as not to contact with each other. The second power source conductor plane and the ground conductor plane are arranged so as to oppose to each other to form a planar capacitor. The printed circuit board has a first connecting conductor which connects a power source terminal of the semiconductor device with the second power source conductor plane, and a second connecting conductor which connects the first power source conductor plane with the second power source conductor plane through a first terminal of the capacitor element. Thereby, an electromagnetic radiation noise is reduced.
    Type: Application
    Filed: December 6, 2012
    Publication date: September 4, 2014
    Applicant: Canon Kabushiki Kaisha
    Inventor: Hiroto Tamaki