Patents by Inventor Hiroyuki Mizuno

Hiroyuki Mizuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7161414
    Abstract: A semiconductor integrated circuit device for fast and low power operations, comprising a plurality of circuit blocks of a chip, each of which has a plurality of states with different power consumption values. A power management circuit determines the state of each of the circuit blocks so as not to exceed a maximum power consumption value of the semiconductor integrated circuit device by considering the power consumption of each circuit block and by each state transition in each circuit block. The maximum power consumption value may be preset or adjustable after fabrication.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: January 9, 2007
    Assignee: Renesas Technology Corporation
    Inventor: Hiroyuki Mizuno
  • Patent number: 7161408
    Abstract: A semiconductor integrated circuit includes a logic circuit which is formed of p-channel MIS transistors and n-channel MIS transistors, a first oscillation circuit of variable oscillation frequency which is formed of p-channel MIS transistors and n-channel MIS transistors, a control circuit which produces a control signal for controlling the threshold voltage of the p-channel and n-channel MIS transistors, and a second oscillation circuit which produces multiple reference clock signals of different frequencies depending on the operation mode. The control circuit receives a reference clock signal and controls first oscillation circuit with the control signal so that the oscillation frequency of the first oscillation circuit corresponds to the frequency of the reference clock signal.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: January 9, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Hiroyuki Mizuno, Takahiro Nagano, Yoshinobu Nakagome
  • Publication number: 20070001734
    Abstract: A low power consumption in a semiconductor integrated circuit device can be achieved by reducing a glitch power in a flip-flop. In a pulse-generator-incorporated auto-clock-gating flip-flop in which data latch is performed by using a pulsed clock, input data is latched based on an output of a dynamic XOR circuit, which is a comparator circuit, during a period when the pulsed clock is at a high level, and the dynamic XOR circuit is cut off during a period when the pulsed clock is at a low level.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 4, 2007
    Inventors: Masafumi Onouchi, Yusuke Kanno, Hiroyuki Mizuno, Yasuhisa Shimazaki, Tetsuya Yamada
  • Patent number: 7159067
    Abstract: In an information processing apparatus involving a cache accessed by INDEX and TAG addresses, accesses to the main memory include many accesses attributable to the local character of referencing and write-back accesses attributable to the replacement of cache contents. Accordingly, high speed accessing requires efficient assignment of the two kinds of accesses to banks of the DRAM. In assigning request addresses from the CPU to different banks of the DRAM, bank addresses of the DRAM and generated by operation of the INDEX field and the TAG field so that local accesses whose INDEX varies and accesses at the time of writing back of which INDEX remains the same but TAG differs can be assigned to different banks. High speed accessing is made possible because accesses to the main memory can be assigned to separate banks.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: January 2, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Takao Watanabe
  • Publication number: 20060291110
    Abstract: A semiconductor integrated circuit device is provided, the circuit being capable of arranging a control signal system, avoiding a danger of failure to check an indefinite signal propagation prevention circuit or the like, further facilitating a check oriented to mounting on an automated tool, and facilitating power shutdown control inside of a chip. In the semiconductor integrated circuit device, power shutdown priorities are provided by independent power domains Area A to Area I. A rule is provided, the rule defining that, in the case where a circuit having a high priority is turned ON, a power domain having its lower priority cannot be turned OFF, thereby facilitating a designing method. In addition, areas capable of applying still another power supply are provided in the independent power areas Area A to Area I. In that area, a relay buffer (repeater) and a clock buffer or an information retaining latch for saving information are integrated.
    Type: Application
    Filed: June 6, 2006
    Publication date: December 28, 2006
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Yoshihiko Yasu, Kenji Hirose, Takahiro Irita
  • Patent number: 7150936
    Abstract: The present invention provides a sealed battery, in which leakage can be detected in reliable manner, a method for manufacturing the sealed battery, and a method for detecting leakage of the sealed battery. The invention provides a sealed battery containing helium, a method for manufacturing the sealed battery, and a method for detecting leakage. From inside a battery case sealed except an electrolyte inlet, the air is withdrawn, and pressure is applied by a gas containing helium under pressure higher than the atmospheric pressure through the electrolyte inlet. The electrolyte is injected, and after the electrolyte and the gas containing helium have been injected, the electrolyte inlet is sealed.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: December 19, 2006
    Assignee: NEC Tokin Tochigi, Ltd.
    Inventors: Kazuyuki Tukawaki, Kiyohide Takimoto, Hiroyuki Mizuno, Yuichi Maekawa
  • Publication number: 20060273825
    Abstract: In a level conversion circuit mounted in an integrated circuit device using a plurality of high- and low-voltage power supplies, the input to the differential inputs are provided. In a level-down circuit, MOS transistors that are not supplied with 3.3 V between the gate and drain and between the gate and source use a thin oxide layer. In a level-up circuit, a logic operation function is provided.
    Type: Application
    Filed: July 12, 2006
    Publication date: December 7, 2006
    Inventors: Kazuo Tanaka, Hiroyuki Mizuno, Rie Nishiyama, Manabu Miyamoto
  • Patent number: 7145383
    Abstract: As the chip manufacturing process progresses towards making smaller and finer chip circuitry, leakage currents of different types including the subthreshold leakage current, gate tunneling leakage current and GIDL (Gate-Induced Drain Leakage) current increase. These leakage currents increase the electrical current consumption of the chip. In a semiconductor integrated circuit device comprising a circuit block having a first MOS transistor, and a leakage current control circuit having a second MOS transistor and a current source, a source and drain circuit of the second MOS transistor is formed between the power supply line of the circuit block and a voltage point where operating voltage is supplied.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: December 5, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Hiroyuki Mizuno, Kiyoo Itoh
  • Publication number: 20060267676
    Abstract: In a semiconductor integrated circuit device, a circuit block has a first MOS transistor, and a leakage current control circuit having a second MOS transistor and a current source, a source and drain circuit of the second MOS transistor is formed between the power supply line of the circuit block and a voltage point where operating voltage is supplied. This current source is connected to the power supply line and in a first state, the power supply line is driven to a first voltage by the second MOS transistor. In a second state, the power supply line is controlled at a second voltage by current flow in the current source and, the voltage applied across the source and drain of the first MOS transistor in the second state is smaller than the voltage applied across the source and drain of the first MOS transistor in the first state.
    Type: Application
    Filed: July 27, 2006
    Publication date: November 30, 2006
    Inventors: Hiroyuki Mizuno, Kiyoo Itoh
  • Patent number: 7138852
    Abstract: A semiconductor integrated circuit device includes a logic circuit to perform a predetermined process, a clock generator to supply a clock signal to the logic circuit, and a speed controller to control the operation speed of the logic circuit. The clock generator changes the frequency of the clock signal by a frequency control signal during a time when the logic circuit is operating, and the speed controller controls the operating speed of the logic circuit in accordance with a change in the clock signal.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: November 21, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Masayuki Miyazaki, Koichiro Ishibashi, Hiroyuki Mizuno
  • Patent number: 7126868
    Abstract: The present invention provides a sense circuit for DRAM memory cell to cover the events that a sense time becomes remarkably longer when a power source voltage is lowered, a sense time under the low voltage condition becomes shorter when temperature rises and a sense time changes to a large extent for fluctuation of processes. The present invention provides the following typical effects. A switch means is provided between the bit line BL and local bit line LBL connected to the memory cells for isolation and coupling of these bit lines. The bit line BL is precharged to the voltage of VDL/2, while the local bit line LBL is precharged to the voltage of VDL. The VDL is the maximum amplitude voltage of the bit line BL. A sense amplifier SA comprises a first circuit including a differential MOS pair having the gate connected to the bit line BL and a second circuit connected to the local bit line LBL for full amplitude amplification and for holding the data.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: October 24, 2006
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Hiroyuki Mizuno, Takeshi Sakata, Nobuhiro Oodaira, Takao Watanabe, Yusuke Kanno
  • Patent number: 7112999
    Abstract: A semiconductor integrated circuit device comprising a logical circuit including a MIS transistor formed on a semiconductor substrate, a control circuit for controlling a threshold voltage of the MIS transistor forming the logical circuit, an oscillation circuit including a MIS transistor formed on the semiconductor substrate, the oscillation circuit being constructed so that the frequency of an oscillation output thereof can be made variable, and a buffer circuit, in which the control circuit is supplied with a clock signal having a predetermined frequency and the oscillation output of the oscillation circuit so that the control circuit compares the frequency of the oscillation output and the frequency of the clock signal to output a first control signal, the oscillation circuit is controlled by the first control signal so that the frequency of the oscillation output corresponds to the frequency of the clock signal, the control of the frequency of the oscillation output being performed in such a manner that
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: September 26, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Hiroyuki Mizuno, Masataka Minami, Koichiro Ishibashi, Masayuki Miyazaki
  • Patent number: 7106123
    Abstract: A semiconductor device including a level converter (LSC) is disclosed. The level converter comprises a voltage-up circuit (LSC1) that operates on low voltage of power supply (VDD) and steps up voltage enough to drive the level converter and a level converter circuit (LSC2) that operates on high voltage of power supply (VDDQ). The voltage-up circuit is capable of constantly generating 2×VDD so that the level converter can convert a low voltage of power supply (VDD) below 1 V to VDDQ. This voltage-up circuit can be configured only with MOSFET transistors produced by thin oxide film deposition, thus enabling high-speed operation. To facilitate designing a circuit for preventing a leakage current from occurring in the level converter during sleep mode of a low-voltage-driven circuit (CB1), the level converter circuit (LSC2) includes a leak protection circuit (LPC) that exerts autonomous control for leak prevention, dispensing with external control signals.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 12, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Takeshi Sakata, Takao Watanabe
  • Publication number: 20060197579
    Abstract: A semiconductor device including a level converter (LSC) is disclosed. The level converter comprises a voltage-up circuit (LSC1) that operates on low voltage of power supply (VDD) and steps up voltage enough to drive the level converter and a level converter circuit (LSC2) that operates on high voltage of power supply (VDDQ). The voltage-up circuit is capable of constantly generating 2×VDD so that the level converter can convert a low voltage of power supply (VDD) below 1 V to VDDQ. This voltage-up circuit can be configured only with MOSFET transistors produced by thin oxide film deposition, thus enabling high-speed operation. To facilitate designing a circuit for preventing a leakage current from occurring in the level converter during sleep mode of a low-voltage-driven circuit (CB1), the level converter circuit (LSC2) includes a leak protection circuit (LPC) that exerts autonomous control for leak prevention, dispensing with external control signals.
    Type: Application
    Filed: April 26, 2006
    Publication date: September 7, 2006
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Takeshi Sakata, Takao Watanabe
  • Patent number: 7091767
    Abstract: In a level conversion circuit mounted in an integrated circuit device using a plurality of high- and low-voltage power supplies, the input to the differential inputs are provided. In a level-down circuit, MOS transistors that are not supplied with 3.3 V between the gate and drain and between the gate and source use a thin oxide layer. In a level-up circuit, a logic operation function is provided.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: August 15, 2006
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kazuo Tanaka, Hiroyuki Mizuno, Rie Nishiyama, Manabu Miyamoto
  • Publication number: 20060176101
    Abstract: In order to provide a semiconductor IC unit such as a microprocessor, etc. which satisfies both fast operation and lower power consumption properties with its high quality kept, the semiconductor IC unit of the present invention is composed so as to include a main circuit (LOG) provided with transistors, which is formed on a semiconductor substrate, and a substrate bias controlling circuit (VBC) used for controlling a voltage to be applied to the substrate, and the main circuit includes switching transistors (MN1 and MP1) used for controlling a voltage to be applied to the substrate and control signals output from the substrate bias controlling circuit is entered to the gate of each of the switching transistors and the control signal is returned to the substrate bias controlling circuit.
    Type: Application
    Filed: April 4, 2006
    Publication date: August 10, 2006
    Inventors: Hiroyuki Mizuno, Koichiro Ishibashi, Takanori Shimura, Toshihiro Hattori
  • Patent number: 7084690
    Abstract: In integrated circuit (IC) devices, skew concerns between the clock pulses supplied to different latches hinder high speed operation. An IC device therefor includes a first clock processor means to generate a third clock pulse in response to first and second clock pulses with identical phase and frequency, a second clock processor means to generate a fifth clock pulse in response the third clock pulse and a fourth clock pulse with identical phase and frequency, and first and second latch groups each including a plurality of latches, in which the second clock pulse is generated via a buffer or divider from the third clock pulse, a fourth clock pulse is generated via a buffer or divider from the fifth clock pulse, and the third and fifth clock pulses are supplied to the first and second latch groups via a buffer, respectively.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: August 1, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Hiroyuki Mizuno
  • Publication number: 20060151721
    Abstract: According to an aspect of the invention, there is provided an electron beam drawing apparatus comprising at least one stage of a deflection amplifier and a deflection unit, a first storage section which stores shot information at a drawing time, a second storage section which stores a correction table indicating a relation between the shot information and an output voltage of the deflection amplifier, and an adjusting section which adjusts an output of the deflection amplifier based on the correction table stored in the second storage section and the shot information stored in the first storage section.
    Type: Application
    Filed: November 8, 2005
    Publication date: July 13, 2006
    Inventors: Tetsuro Nakasugi, Kazuo Tawarayama, Hiroyuki Mizuno, Takumi Ota, Noriaki Sasaki, Tatsuhiko Higashiki, Takeshi Koshiba, Shunko Magoshi
  • Publication number: 20060146623
    Abstract: The present invention provides a sense circuit for DRAM memory cell to cover the events that a sense time becomes remarkably longer when a power source voltage is lowered, a sense time under the low voltage condition becomes shorter when temperature rises and a sense time changes to a large extent for fluctuation of processes. The present invention provides the following typical effects. A switch means is provided between the bit line BL and local bit line LBL connected to the memory cells for isolation and coupling of these bit lines The bit line BL is precharged to the voltage of VDL/2, while the local bit line LBL is precharged to the voltage of VDL. The VDL is the maximum amplitude voltage of the bit line BL. A sense amplifier SA comprises a first circuit including a differential MOS pair having the gate connected to the bit line BL and a second circuit connected to the local bit line LBL for full amplitude amplification and for holding the data.
    Type: Application
    Filed: February 28, 2006
    Publication date: July 6, 2006
    Inventors: Hiroyuki Mizuno, Takeshi Sakata, Nobuhiro Oodaira, Takao Watanabe, Yusuke Kanno
  • Publication number: 20060146635
    Abstract: When a leakage current of a circuit block under a non-use state is reduced by means of a power switch, frequent ON/OFF operations of the switch within a short time invite an increase of consumed power, on the contrary. Because a pre-heating time is necessary from turn-on of the switch till the circuit block becomes usable, control of the switch during an operation deteriorates a processing time of a semiconductor device. The switch is ON/OFF-controlled with a task duration time of a CPU core for controlling logic circuits and memory cores as a unit. After the switch is turned off, the switch is again turned on before termination of the task in consideration of the pre-heating time.
    Type: Application
    Filed: February 28, 2006
    Publication date: July 6, 2006
    Inventors: Takao Watanabe, Kunio Uchiyama, Osamu Nishii, Naohiko Irie, Hiroyuki Mizuno