Patents by Inventor Ho Cheol Kim

Ho Cheol Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8481164
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Patent number: 8436062
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 8394224
    Abstract: Layered nanostructures are constructed by imprinting material with a mold, while selectively modifying and removing a portion of the mold. The mold, which includes a pattern of features, is modified so that the portion of the mold that includes the features is made chemically and/or physically distinct from the rest of the mold. That portion of the mold that includes the features is retained while the rest of the mold is removed. The retained portion of the mold provides mechanical support for any adjoining layer or layers.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 12, 2013
    Assignees: International Business Machines Corporation, King Abdulaziz City for Science and Technology
    Inventors: Fahhad H. Alharbi, John D. Bass, Ho-Cheol Kim, Robert D. Miller
  • Patent number: 8389589
    Abstract: A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 8349203
    Abstract: A method of forming a block copolymer pattern comprises providing a substrate comprising a topographic pre-pattern comprising a ridge surface separated by a height, h, greater than 0 nanometers from a trench surface; disposing a block copolymer comprising two or more block components on the topographic pre-pattern to form a layer having a thickness of more than 0 nanometers over the ridge surface and the trench surface; and annealing the layer to form a block copolymer pattern having a periodicity of the topographic pre-pattern, the block copolymer pattern comprising microdomains of self-assembled block copolymer disposed on the ridge surface and the trench surface, wherein the microdomains disposed on the ridge surface have a different orientation compared to the microdomains disposed on the trench surface.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Sang-min Park, Charles T. Rettner
  • Patent number: 8343578
    Abstract: A method and associated structure. A substrate is provided. The substrate has an energetically neutral corrugated surface layer. A film is formed on the corrugated surface layer. The film includes a combination of a di-block copolymer and a stiffening compound. The di-block copolymer includes lamellar microdomains of a first polymer block and lamellar microdomains of a second polymer block. The stiffening compound is dissolved within the first polymer block. At least one lamellar microdomain is removed from the film such that an oriented structure remains on the surface layer.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Charles Thomas Rettner
  • Publication number: 20120308476
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Patent number: 8323868
    Abstract: Bilayer systems include a bottom layer formed of polydimethylglutarimide, an acid labile dissolution inhibitor and a photoacid generator. The bilayer system can be exposed and developed in a single exposure and development process.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: December 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Ho-Cheol Kim, Hiroshi Ito, Atsuko Ito, legal representative, Hoa D. Truong
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Patent number: 8268903
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: September 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 8247904
    Abstract: An interconnection between a sublithographic-pitched structure and a lithographic pitched structure is formed. A plurality of conductive lines having a sublithographic pitch may be lithographically patterned and cut along a line at an angle less than 45 degrees from the lengthwise direction of the plurality of conductive lines. Alternately, a copolymer mixed with homopolymer may be placed into a recessed area and self-aligned to form a plurality of conductive lines having a sublithographic pitch in the constant width region and a lithographic dimension between adjacent lines at a trapezoidal region. Yet alternately, a first plurality of conductive lines with the sublithographic pitch and a second plurality of conductive lines with the lithographic pitch may be formed at the same level or at different.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Daniel C. Edelstein, William D. Hinsberg, Ho-Cheol Kim, Steven Koester, Paul M. Soloman
  • Patent number: 8226838
    Abstract: Disclosed are methods of forming polymer structures comprising: applying a solution of a block copolymer assembly comprising at least one block copolymer to a neutral substrate having a chemical pattern thereon, the chemical pattern comprising alternating pinning and neutral regions that are chemically distinct and have a first spatial frequency given by the number of paired sets of pinning and neutral regions along a given direction on the substrate; and forming domains of the block copolymer that form by lateral segregation of the blocks in accordance with the underlying chemical pattern, wherein at least one domain of the block copolymer assembly has an affinity for the pinning regions, wherein a structure extending across the chemical pattern is produced, the structure having a uniform second spatial frequency given by the number of repeating sets of domains along the given direction that is at least twice that of the first spatial frequency.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, William D. Hinsberg, Ho-Cheol Kim, Charles T. Rettner, Daniel P. Sanders
  • Publication number: 20120183743
    Abstract: A first nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running along a first direction is formed from first self-assembling block copolymers within a first layer. The first layer is filled with a filler material and a second layer is deposited above the first layer containing the first nanoscale nested line structure. A second nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running in a second direction is formed from second self-assembling block copolymers within the second layer. The composite pattern of the first nanoscale nested line structure and the second nanoscale nested line structure is transferred into an underlayer beneath the first layer to form an array of structures containing periodicity in two directions.
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Dalton, Bruce B. Doris, Ho-Cheol Kim, Carl Radens
  • Patent number: 8207028
    Abstract: A first nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running along a first direction is formed from first self-assembling block copolymers within a first layer. The first layer is filled with a filler material and a second layer is deposited above the first layer containing the first nanoscale nested line structure. A second nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running in a second direction is formed from second self-assembling block copolymers within the second layer. The composite pattern of the first nanoscale nested line structure and the second nanoscale nested line structure is transferred into an underlayer beneath the first layer to form an array of structures containing periodicity in two directions.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: June 26, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Dalton, Bruce B. Doris, Ho-Cheol Kim, Carl Radens
  • Publication number: 20120152448
    Abstract: Layered nanostructures are constructed by imprinting material with a mold, while selectively modifying and removing a portion of the mold. The mold, which includes a pattern of features, is modified so that the portion of the mold that includes the features is made chemically and/or physically distinct from the rest of the mold. That portion of the mold that includes the features is retained while the rest of the mold is removed. The retained portion of the mold provides mechanical support for any adjoining layer or layers.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: FAHHAD H. ALHARBI, JOHN D. BASS, HO-CHEOL KIM, ROBERT D. MILLER
  • Publication number: 20120129357
    Abstract: A first nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running along a first direction is formed from first self-assembling block copolymers within a first layer. The first layer is filled with a filler material and a second layer is deposited above the first layer containing the first nanoscale nested line structure. A second nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running in a second direction is formed from second self-assembling block copolymers within the second layer. The composite pattern of the first nanoscale nested line structure and the second nanoscale nested line structure is transferred into an underlayer beneath the first layer to form an array of structures containing periodicity in two directions.
    Type: Application
    Filed: January 22, 2008
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Dalton, Bruce B. Doris, Ho-Cheol Kim, Carl Radens
  • Publication number: 20110315553
    Abstract: Nanoparticles in a colloid are purified, with the colloid including a fluid, unwanted matter, and the nanoparticles to be purified. An electric field is applied that is substantially spatially uniform over a distance that is at least equal to a characteristic dimension of the nanoparticles, so that at least some of the nanoparticles move towards at least one collection surface as a result of the force arising between their electrical charge and the electric field, whereupon nanoparticles are collected on said at least one collection surface. The collection surface(s) may be one or more electrodes to which a voltage potential is applied. The collected nanoparticles are then removed from the collection surface, e.g., by dispersing them into another fluid.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: XIN AI, JOHN D. BASS, HO-CHEOL KIM, ROBERT D. MILLER, JOHN C. SCOTT, QING SONG
  • Publication number: 20110245433
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Application
    Filed: May 4, 2011
    Publication date: October 6, 2011
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Publication number: 20110245418
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Application
    Filed: May 4, 2011
    Publication date: October 6, 2011
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Publication number: 20110227059
    Abstract: Glassy carbon nanostructures are disclosed that can be used as electrode materials in batteries and electrochemical capacitors, or as photoelectrodes in photocatalysis and photoelectrochemistry devices. In some embodiments channels (e.g., substantially cylindrically-shaped pores) are formed in a glassy carbon substrate, whereas in other embodiments, ridges are formed that extend along and over a glassy carbon substrate. In either case, a semiconductor and/or metal oxide may be deposited over the glassy carbon to form a composite material.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Sang-Min Park