Patents by Inventor Ho-kyun An

Ho-kyun An has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150349736
    Abstract: Provided herein is a feedback amplifier including an amplifier circuit configured to amplify an input signal input from an input terminal and output the amplified input signal to an output terminal; a feedback circuit configured to apply a feedback resistance value to a signal output to the output terminal, and to control a gain of the amplifier circuit by adjusting the input signal by a bias voltage applied with a feedback resistance value determined; a packet signal sensor configured to generate a fixed resistance control signal for controlling a fixed resistance value included in the feedback resistance value through a comparison between the output from the output terminal with a minimum signal level; and a fixed resistance controller configured to control the fixed resistance value included in the feedback resistance value in response to the fixed resistance control signal.
    Type: Application
    Filed: March 23, 2015
    Publication date: December 3, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Heung LEE, Dong Min KANG, SEONG IL KIM, Ho Kyun AHN, Hyung Sup YOON, Jong Won LIM, Chull Won JU
  • Patent number: 9166011
    Abstract: Disclosed are a semiconductor device having a stable gate structure, and a manufacturing method thereof, in which a gate structure is stabilized by additionally including a plurality of gate feet under a gate head in a width direction of the gate head so as to serve as supporters in a gate structure including a fine gate foot having a length of 0.2 ?m or smaller, and the gate head having a predetermined size. Accordingly, it is possible to prevent the gate electrode of the semiconductor device from collapsing, and improve reliability of the semiconductor device during or after the process of the semiconductor device.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: October 20, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Seong Il Kim, Dong Min Kang, Sang Heung Lee, Ho Kyun Ahn, Hyung Sup Yoon, Byoung Gue Min, Jong Won Lim
  • Patent number: 9165896
    Abstract: The present invention relates to a GaN transistor, and a method of fabricating the same, in which a structure of a bonding pad is improved by forming an ohmic metal layer at edges of the bonding pad of a source, a drain, and a gate so as to be appropriate to wire-bonding or a back-side via-hole forming process. Accordingly, adhesive force between a metal layer of the bonding pad and a GaN substrate is enhanced by forming the ohmic metal at the edges of the bonding pad during manufacturing of the GaN transistor, thereby minimizing a separation phenomenon of a pad layer during the wire-bonding or back-side via-hole forming process, and improving reliability of a device.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: October 20, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hae Cheon Kim, Ho Kyun Ahn, Byoung Gue Min, Hyung Sup Yoon, Jong Won Lim
  • Publication number: 20150270822
    Abstract: Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
    Type: Application
    Filed: September 5, 2014
    Publication date: September 24, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dong Min KANG, Seong Il KIM, Sang Heung LEE, Chull Won JU, Ho Kyun AHN, Hyung Sup YOON, Jong Won LIM
  • Publication number: 20150236108
    Abstract: Disclosed are a semiconductor device having a stable gate structure, and a manufacturing method thereof, in which a gate structure is stabilized by additionally including a plurality of gate feet under a gate head in a width direction of the gate head so as to serve as supporters in a gate structure including a fine gate foot having a length of 0.2 ?m or smaller, and the gate head having a predetermined size. Accordingly, it is possible to prevent the gate electrode of the semiconductor device from collapsing, and improve reliability of the semiconductor device during or after the process of the semiconductor device.
    Type: Application
    Filed: July 10, 2014
    Publication date: August 20, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Seong Il KIM, Dong Min KANG, Sang Heung LEE, Ho Kyun AHN, Hyung Sup YOON, Byoung Gue MIN, Jong Won LIM
  • Publication number: 20150206847
    Abstract: The present invention relates to a GaN transistor, and a method of fabricating the same, in which a structure of a bonding pad is improved by forming an ohmic metal layer at edges of the bonding pad of a source, a drain, and a gate so as to be appropriate to wire-bonding or a back-side via-hole forming process. Accordingly, adhesive force between a metal layer of the bonding pad and a GaN substrate is enhanced by forming the ohmic metal at the edges of the bonding pad during manufacturing of the GaN transistor, thereby minimizing a separation phenomenon of a pad layer during the wire-bonding or back-side via-hole forming process, and improving reliability of a device.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 23, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hae Cheon KIM, Ho Kyun AHN, Byoung Gue MIN, Hyung Sup YOON, Jong Won LIM
  • Publication number: 20150194494
    Abstract: Disclosed are a field effect transistor for high voltage driving including a gate electrode structure in which a gate head extended in a direction of a drain is supported by a field plate embedded under a region of the gate head so as to achieve high voltage driving, and a manufacturing method thereof. Accordingly, the gate head extended in the direction of the drain is supported by the field plate electrically spaced by using an insulating layer, so that it is possible to stably manufacture a gate electrode including the extended gate head, and gate resistance is decreased by the gate head extended in the direction of the drain and an electric field peak value between the gate and the drain is decreased by the gate electrode including the gate head extended in the direction of the drain and the field plate proximate to the gate, thereby achieving an effect in that a breakdown voltage of a device is increased.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 9, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Ho Kyun AHN, Hae Cheon KIM, Zin Sig KIM, Sang Heung LEE, Byoung Gue MIN, Hyung Sup YOON, Dong Min KANG, Seong Il KIM, Jong Min LEE, Jong Won LIM, Yong Hwan KWON, Eun Soo NAM
  • Publication number: 20150187887
    Abstract: Provided is a III nitride semiconductor device higher heat dissipation performance, and a method of manufacturing a III nitride semiconductor device which makes it possible to fabricate such a III nitride semiconductor device at higher yield. In a method of a III nitride semiconductor device, a semiconductor structure obtained by sequentially stacking an n-layer, an active layer, and a p-layer is formed on a growth substrate; a support body including a first support electrically connected to an n-layer to serve as an n-side electrode, a second support electrically connected to a p-layer to serve as a p-side electrode, and structures made of an insulator for insulation between first and second supports is formed on the p-layer side of the semiconductor structure; and the growth substrate is separated using a lift-off process. The first support and the second support are grown by plating.
    Type: Application
    Filed: July 4, 2012
    Publication date: July 2, 2015
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., BBSA LIMITED
    Inventors: Meoung Whan Cho, Seog Woo Lee, Pil Guk Jang, Hoe Young Yang, Jin Hee Kim, Ho Kyun Rho, Se Young Moon, Ryuichi Toba, Yoshitaka Kadowaki
  • Publication number: 20150144961
    Abstract: A high frequency device includes: a capping layer formed on an epitaxial structure; source and drain electrodes formed on the capping layer; a multilayer insulating pattern formed on entire surfaces of the source and drain electrodes and the capping layer in a step shape; a T-shaped gate passing through the multilayer insulating pattern and the capping layer to be in contact with the epitaxial structure; and a passivation layer formed along entire surfaces of the T-shaped gate and the multilayer insulating pattern.
    Type: Application
    Filed: February 7, 2014
    Publication date: May 28, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup YOON, Byoung Gue MIN, Ho Kyun AHN, Jong Won LIM, Dong Min KANG, Jong Min LEE
  • Patent number: 9012920
    Abstract: Disclosed are a GaN (gallium nitride) compound power semiconductor device and a manufacturing method thereof. The gallium nitride compound power semiconductor device includes: a gallium nitride compound element formed by being grown on a wafer; a contact pad including a source, a drain, and a gate connecting with the gallium nitride compound element; a module substrate to which the nitride gallium compound element is flip-chip bonded; a bonding pad formed on the module substrate; and a bump formed on the bonding pad of the module substrate so that the contact pad and the bonding pad are flip-chip bonded.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 21, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chull Won Ju, Hae Cheon Kim, Hyung Sup Yoon, Woo Jin Chang, Sang-Heung Lee, Dong-Young Kim, Jong-Won Lim, Dong Min Kang, Ho Kyun Ahn, Jong Min Lee, Eun Soo Nam
  • Publication number: 20150087142
    Abstract: Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jong-Won LIM, Ho Kyun AHN, Young Rak PARK, Dong Min KANG, Woo Jin CHANG, Seong-il KIM, Sung Bum BAE, Sang-Heung LEE, Hyung Sup YOON, Chull Won JU, Jae Kyoung MUN, Eun Soo NAM
  • Patent number: 8987694
    Abstract: Semiconductor devices, and methods of manufacturing the same, include a field region in a semiconductor substrate to define an active region. An interlayer insulating layer is on the semiconductor substrate. A semiconductor pattern is within a hole vertically extending through the interlayer insulating layer. The semiconductor pattern is in contact with the active region. A barrier region is between the semiconductor pattern and the interlayer insulating layer. The barrier region includes a first buffer dielectric material and a barrier dielectric material. The first buffer dielectric material is between the barrier dielectric material and the semiconductor pattern, and the barrier dielectric material is spaced apart from both the semiconductor pattern and the active region.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Jong Han, Kong-Soo Lee, Yoon-Goo Kang, Ho-Kyun An, Seong-Hoon Jeong
  • Patent number: 8937002
    Abstract: The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Bum Bae, Eun Soo Nam, Jae Kyoung Mun, Sung Bock Kim, Hae Cheon Kim, Chull Won Ju, Sang Choon Ko, Jong-Won Lim, Ho Kyun Ahn, Woo Jin Chang, Young Rak Park
  • Patent number: 8928152
    Abstract: A semiconductor device includes a substrate having a conductive area, a first pattern formed on the substrate and having a contact hole through which the conductive area is exposed, and a contact plug in the contact hole. The contact plug includes first and second silicon layers. The first silicon layer, formed from a first compound including at least two silicon atoms, is formed in the contact hole to contact a top surface of the conductive area and a side wall of the first pattern. The second silicon layer, formed from a second compound including a number of silicon atoms less than the number of the silicon atoms of the first compound, is formed on the first silicon layer and fills a remaining space of the contact hole, the second silicon layer being spaced apart from the first pattern at an entrance of the contact hole.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Taek-soo Jeon, Bong-hyun Kim, Won-seok Yoo, Jae-hong Seo, Ho-kyun An, Dae-hyun Kim
  • Publication number: 20140363937
    Abstract: Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 11, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Woo Jin CHANG, Jong-Won LIM, Ho Kyun AHN, Sang Choon KO, Sung Bum BAE, Chull Won JU, Young Rak PARK, Jae Kyoung MUN, Eun Soo NAM
  • Patent number: 8853660
    Abstract: Semiconductor devices include lower interconnections, upper interconnections crossing over the lower interconnections, selection components disposed at crossing points of the lower interconnections and the upper interconnections, respectively, and memory components disposed between the selection components and the upper interconnections. Each of the selection components may include a semiconductor pattern having a first sidewall and a second sidewall. The first sidewall of the semiconductor pattern may have a first upper width and a first lower width that is greater than the first upper width. The second sidewall of the semiconductor pattern may have a second upper width and a second lower width that is substantially equal to the second upper width.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: JaeJong Han, Sungun Kwon, Jinhye Bae, Kongsoo Lee, Seong Hoon Jeong, Yoongoo Kang, Ho-Kyun An
  • Patent number: 8841154
    Abstract: Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Jong-Won Lim, Ho Kyun Ahn, Jong Min Lee, Seong-il Kim, Jae Kyoung Mun, Eun Soo Nam
  • Publication number: 20140264517
    Abstract: Semiconductor devices having a silicon-germanium channel layer and methods of forming the semiconductor devices are provided. The methods may include forming a silicon-germanium channel layer on a substrate in a peripheral circuit region and sequentially forming a first insulating layer and a second insulating layer on the silicon-germanium channel layer. The methods may also include forming a conductive layer on the substrate, which includes a cell array region and the peripheral circuit region, and patterning the conductive layer to form a conductive line in the cell array region and a gate electrode in the peripheral circuit region. The first insulating layer may be formed at a first temperature and the second insulating layer may be formed at a second temperature higher than the first temperature.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 18, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Youngkuk KIM, Ho-Kyun AN, Jaehyun YEO, Badro IM, HanJin LIM, Sungho JANG, Insang JEON
  • Patent number: 8835436
    Abstract: A novel arylpiperazine-containing imidazole 4-carboxamide derivative or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition comprising the same as an active ingredient for preventing or treating a depressive disorder are provided.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 16, 2014
    Assignee: Green Cross Corporation
    Inventors: Jinhwa Lee, Hee Jeong Seo, Suk Youn Kang, Eun-Jung Park, Min Ju Kim, Suk Ho Lee, Jong Yup Kim, Jeongmin Kim, Myung Eun Jung, Hyun Jung Kim, Mi-soon Kim, Ho Kyun Han, Kwang Woo Ahn, Min Woo Lee, Ki-Nam Lee, Ae Nim Pae, Woo-Kyu Park
  • Patent number: 8831639
    Abstract: Provided are a social network service providing system and method for setting a relationship between users based on a motion of a mobile terminal, and a distance determined by a user. The social network service providing system may include a request receiver to receive, from a mobile terminal, a request generated in accordance with a motion of the mobile terminal, an information providing unit to provide location information of the mobile terminal, and distance information determined by a user of the mobile terminal, a mobile terminal identifying unit to identify at least one other mobile terminal based on the location information and the distance information, and a user information providing unit to provide information about a user of the at least one other mobile terminal.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 9, 2014
    Assignee: NHN Corporation
    Inventors: Ho Kyun Park, Bo Hyun Oh, Curtis Youhan Chung