Patents by Inventor Ho Suk Shin

Ho Suk Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9590243
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 7, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 9590242
    Abstract: Disclosed are precursor particles of a lithium composite transition metal oxide for lithium secondary batteries, wherein the precursor particles of a lithium composite transition metal oxide are composite transition metal hydroxide particles including at least two transition metals and having an average diameter of 1 ?m to 8 ?m, wherein the composite transition metal hydroxide particles exhibit monodisperse particle size distribution and have a coefficient of variation of 0.2 to 0.7, and a cathode active material including the same.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: March 7, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Seong Hoon Kang, Byung Chun Park, Ho Suk Shin, Sang Min Park, Hong Kyu Park
  • Publication number: 20160336584
    Abstract: Disclosed is a transition metal precursor used for preparation of lithium composite transition metal oxide, the transition metal precursor comprising a composite transition metal compound represented by the following Formula 1: M(OH1?x)2?yAy/n??(1) wherein M comprises two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and second period transition metals; A comprises one or more anions except OH1?x; 0<x<0.5; 0.01?y?0.5; and n is an oxidation number of A. The transition metal precursor according to the present invention contains a specific anion. A lithium composite transition metal oxide prepared using the transition metal precursor comprises the anion homogeneously present on the surface and inside thereof, and a secondary battery based on the lithium composite transition metal oxide thus exerts superior power and lifespan characteristics, and high charge and discharge efficiency.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Ho Suk Shin, Sung-Kyun Chang, Seong Hoon Kang, Dong Hun Lee, Sang Min Park
  • Publication number: 20160293951
    Abstract: The present disclosure relates to a positive electrode active material which reduces lithium by-products and improves structural stability and includes a lithium-nickel based transition metal composite oxide in which an alkaline earth metal having oxidation number of +2 is doped and a phosphate coated layer formed on the outer surface of the composite oxide. Accordingly, a second battery including the positive electrode active material has excellent capacity characteristics, and also improves structural stability during charging/discharging and prevents swelling, thereby being capable of exhibiting excellent life characteristics. Therefore, the present invention may be easily applied to industry in need thereof, and particularly to electric vehicles industry requiring high capacity and long-term life characteristics.
    Type: Application
    Filed: February 26, 2015
    Publication date: October 6, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Jin Hyung Lim, Ho Suk Shin, Dong Hun Lee, Hyun Jin Oh, Joo Hong Jin, Wang Mo Jung
  • Patent number: 9431143
    Abstract: Disclosed is a transition metal precursor used for preparation of lithium composite transition metal oxide, the transition metal precursor comprising a composite transition metal compound represented by the following Formula 1: M(OH1?x)2?yAy/n??(1) wherein M comprises two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and second period transition metals; A comprises one or more anions except OH1?x; 0?x?0.5; 0.01?y?0.5; and n is an oxidation number of A. The transition metal precursor according to the present invention contains a specific anion. A lithium composite transition metal oxide prepared using the transition metal precursor comprises the anion homogeneously present on the surface and inside thereof, and a secondary battery based on the lithium composite transition metal oxide thus exerts superior power and lifespan characteristics, and high charge and discharge efficiency.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: August 30, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Ho Suk Shin, Sung-Kyun Chang, Seong Hoon Kang, Dong Hun Lee, Sang Min Park
  • Patent number: 9416024
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: August 16, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 9412996
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 9, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20160013476
    Abstract: Provided are a method of preparing a cathode active material including coating a surface of a lithium transition metal oxide with a lithium boron oxide by dry mixing the lithium transition metal oxide and a boron-containing compound and performing a heat treatment, and a cathode active material prepared thereby. A method of preparing a cathode active material according to an embodiment of the present invention may easily transform lithium impurities present in a lithium transition metal oxide into a structurally stable lithium boron oxide by performing a heat treatment near the melting point of a boron-containing compound. Also, a coating layer may be formed in which the lithium boron oxide is uniformly coated in an amount proportional to the used amount of the boron-containing compound even at a low heat treatment temperature.
    Type: Application
    Filed: October 29, 2014
    Publication date: January 14, 2016
    Inventors: Hyun Jin Oh, Ho Suk Shin, Jin Hyung Lim, Dong Hun Lee, Joo Hong Jin, Wang Mo Jung
  • Patent number: 9236608
    Abstract: Provided is a cathode active material which is lithium transition metal oxide having an ?-NaFeO2 layered crystal structure, wherein the transition metal is a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is more than +3, and lithium transition metal oxide satisfies the Equation m(Ni)?m(Mn) (in which m (Ni) and m (Mn) represent an molar number of nickel and manganese, respectively). The lithium transition metal oxide has a uniform and stable layered structure through control of oxidation number of transition metals to a level higher than +3, thus advantageously exerting improved overall electrochemical properties including electric capacity, in particular, superior high-rate charge/discharge characteristics.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: January 12, 2016
    Assignee: LG CHEM, LTD.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20160002063
    Abstract: Disclosed are a transition metal precursor for preparation of a lithium transition metal oxide, in which a ratio of tap density of the precursor to average particle diameter D50 of the precursor satisfies the condition represented by Equation 1 below, and a lithium transition metal oxide prepared using the same.
    Type: Application
    Filed: February 11, 2014
    Publication date: January 7, 2016
    Applicant: LG CHEM, LTD.
    Inventors: Jinhyung Lim, Sung-Kyun Chang, Won Seok Chang, Sin Young Park, Ho Suk Shin, Hyun Jin Oh, Jung Min Han, In Sung Uhm, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20150147654
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: February 5, 2015
    Publication date: May 28, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Publication number: 20150090927
    Abstract: Disclosed are a cathode active material including a lithium transition metal oxide based on at least one transition metal selected from the group consisting of Ni, Mn and Co, wherein at least one hetero element selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Bi, Zn and Zr is located at a surface portion of or inside the lithium transition metal oxide, and a secondary battery including the same. The cathode active material according to the present invention includes predetermined hetero elements at a surface thereof and therein, and, as such, a secondary battery based on the cathode active material may exhibit excellent high-speed charge characteristics and lifespan characteristics.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150090926
    Abstract: Disclosed are a transition metal precursor for preparing a lithium composite transition metal oxide, a method for preparing the precursor, and a lithium composite transition metal oxide. The transition metal precursor includes a composite transition metal compound having a composition represented by Formula (1) and a Mn content of 60 to 85 mol %: NiaMbMn1-(a+b)(OH1-x)2??(1) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and period II transition metals, 0.15?a?0.3, 0?b?0.1 and 0<x<0.5. The lithium composite transition metal oxide has a composition represented by Formula (2) and a Mn content of 60 to 85 mol %: Li1+z[NiaMbMn1-(a+b)]2O4-yAy??(2) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr and period II transition metals, A is a monoanion or dianion, 0.15?a?0.3, 0.005?b?0.1, ?0.1?z?0.1 and 0?y?0.1.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150079473
    Abstract: Disclosed are a cathode active material for high voltage and a lithium secondary battery including the same. More particularly, a cathode active material including spinel-type compound particles having a composition represented by Formula 1 below; and metal oxides or metal hydroxides present on surfaces of the spinel-type compound particles, and a lithium secondary battery including the same. Li1+aMxMn2?xO4?zAz ??(1) where a, x and z are defined in a specification of the present invention.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Minsuk Kang, Seong Hoon Kang, Ho Suk Shin, Byung Chun Park, Sang Min Park, Geungi Min
  • Publication number: 20150079474
    Abstract: Disclosed herein is a high voltage cathode active material and a method for preparing the same. The cathode active material includes particles of a spinel-type compound having a composition represented by Formula (1) and a carbon-based material present on surfaces of the particles of the spinel-type compound: Li1+aMxMn2?xO4?zAz ??(1) where ?0.1?a?0.1, 0.3?x?0.8 and 0?z?0.1.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150069293
    Abstract: Disclosed is a precursor for preparing a lithium composite transition metal oxide. More particularly, a transition metal precursor, including a composite transition metal compound represented by Formula 1 below, used to prepare a lithium transition metal oxide: NiaMbMn1?(a+b)(O1?x)2??(1) wherein M is at least one selected form the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; and 0.2?a?0.25, 0?b?0.1, and 0<x<0.5.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150034865
    Abstract: Disclosed are a transition metal precursor for preparation of a lithium composite transition metal oxide, the transition metal precursor including a composite transition metal compound represented by Formula 1 below and a hydrocarbon compound, and a method of preparing the same: MnaMb(OH1?x)2??(1) wherein M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr, and second period transition metals; 0.4?a?1; 0?b?0.6; a+b?1; and 0<x<0.5. The transition metal precursor includes a particular composite transition metal compound and a hydrocarbon compound, and thus, when a lithium composite transition metal oxide is prepared using the same, carbon may be present in lithium transition metal oxide particles and/or on surfaces thereof, whereby a secondary battery including the lithium composite transition metal oxide exhibits excellent rate characteristics and long lifespan.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 5, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Sun Sik Shin, Sang Min Park, Ho Suk Shin, Hye Lim Jeon, Bo Ram Lee
  • Publication number: 20140353545
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Application
    Filed: July 17, 2014
    Publication date: December 4, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20140346393
    Abstract: Disclosed is a transition metal precursor used for preparation of lithium composite transition metal oxide, the transition metal precursor comprising a composite transition metal compound represented by the following Formula 1: M(OH1?x)2?yAy/n??(1) wherein M comprises two or more selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr and second period transition metals; A comprises one or more anions except OH1?x; 0?x?0.5; 0.01?y?0.5; and n is an oxidation number of A. The transition metal precursor according to the present invention contains a specific anion. A lithium composite transition metal oxide prepared using the transition metal precursor comprises the anion homogeneously present on the surface and inside thereof, and a secondary battery based on the lithium composite transition metal oxide thus exerts superior power and lifespan characteristics, and high charge and discharge efficiency.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: Byung Chun Park, Ho Suk Shin, Sung-Kyun Chang, Seong Hoon Kang, Dong Hun Lee, Sang Min Park
  • Publication number: 20140302615
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen