Patents by Inventor Ho Suk Shin

Ho Suk Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120012780
    Abstract: Provided is a cathode active material which is lithium transition metal oxide having an ?-NaFeO2 layered crystal structure, wherein the transition metal is a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is more than +3, and lithium transition metal oxide satisfies the Equation m(Ni)?m(Mn) (in which m (Ni) and m (Mn) represent an molar number of manganese and nickel, respectively). The lithium transition metal oxide has a uniform and stable layered structure through control of oxidation number of transition metals to a level higher than +3, thus advantageously exerting improved overall electrochemical properties including electric capacity, in particular, superior high-rate charge/discharge characteristics.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 19, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Sung Kyun CHANG, Hong-Kyu PARK, Ho Suk SHIN, Seung Tae HONG, Youngsun CHOI
  • Publication number: 20110195303
    Abstract: Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1<m(Ni)/m(Mn)<1.5 and 0.4<m(Ni2+)/m(Mn4+)<1, are satisfied. The inventive cathode active material has a more uniform and stable layered structure by controlling the oxidation number of transition metals contained in a transition metal oxide layer to form the layered structure, compared to conventional substances. Accordingly, the active material exhibits improved overall electrochemical characteristics including battery capacity and, in particular, excellent high rate charge-discharge features.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 11, 2011
    Inventors: Sung Kyun CHANG, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20110168944
    Abstract: Provided is a cathode active material for a lithium secondary battery, including a lithium-transition metal composite oxide represented by the following formula (1), which contains an excess of lithium, so as to exhibit enhanced rate characteristics under high rate charge/discharge conditions: Lii+aNi?bNi?cMndCoeO2 (1) wherein each of a, b, c, d and e has the same meaning as defined in the disclosure. The cathode active material according to the present invention includes an excess of lithium and, different from conventional technologies, a lithium-transition metal composite oxide containing a nickel element with a predetermined oxidation number, so that the active material exhibits a stable crystal structure and excellent rate characteristics under high rate charge/discharge conditions.
    Type: Application
    Filed: October 8, 2008
    Publication date: July 14, 2011
    Applicant: LG Chem, LTD.
    Inventors: Sung Kyun Chang, Ho Suk Shin, Hong-Kyu Park
  • Publication number: 20110114873
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification)having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: October 1, 2010
    Publication date: May 19, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Publication number: 20110114874
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 19, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Publication number: 20110117662
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 19, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Patent number: 7935444
    Abstract: Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1<m(Ni)/m(Mn)<1.5 and 0.4<m(Ni2+)/m(Mn4+)<1, are satisfied. The inventive cathode active material has a more uniform and stable layered structure by controlling the oxidation number of transition metals contained in a transition metal oxide layer to form the layered structure, compared to conventional substances. Accordingly, the active material exhibits improved overall electrochemical characteristics including battery capacity and, in particular, excellent high rate charge-discharge features.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 3, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20110089367
    Abstract: Provided is a precursor for the preparation of a lithium transition metal oxide that is used for the preparation of a lithium transition metal oxide as a cathode active material for a lithium secondary battery, through a reaction with a lithium-containing compound, wherein the precursor contains two or more transition metals, and sulfate ion (SO4)-containing salt ions derived from a transition metal salt for the preparation of the precursor have a content of 0.1 to 0.7% by weight, based on the total weight of the precursor.
    Type: Application
    Filed: April 3, 2009
    Publication date: April 21, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Ho Suk Shin, Sung Kyun Chang, Hong-Kyu Park, Sinyoung Park, Youngsun Choi, Seung Tae Hong, Hyo-Shik Kil
  • Publication number: 20100148115
    Abstract: Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1<m(Ni)/m(Mn)<1.5 and 0.4<m(Ni2+)/m(Mn4+)<1, are satisfied. The inventive cathode active material has a more uniform and stable layered structure by controlling the oxidation number of transition metals contained in a transition metal oxide layer to form the layered structure, compared to conventional substances. Accordingly, the active material exhibits improved overall electrochemical characteristics including battery capacity and, in particular, excellent high rate charge-discharge features.
    Type: Application
    Filed: September 23, 2009
    Publication date: June 17, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20080032196
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 7, 2008
    Applicant: LG CHEM, LTD.
    Inventors: Hong-Kyu PARK, Sun sik SHIN, Sin young PARK, Ho suk SHIN, Jens PAULSEN
  • Publication number: 20070292761
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: July 31, 2007
    Publication date: December 20, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Hong-Kyu PARK, Sun sik SHIN, Sin young PARK, Ho suk SHIN, Jens M. PAULSEN