Patents by Inventor Hong Shi

Hong Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030109234
    Abstract: A Radio Frequency RF transmitter includes a translational loop architecture that supports non-constant envelope modulation types and includes by adjusting the envelope of the translational loop at the translational loop output. The RF transmitter includes a phase equalizer, an Intermediate Frequency (IF) modulator, a translational loop, an envelope time delay adjust block, an envelope adjust block, and a time delay calibration block. The phase equalizer receives a modulated baseband signal and phase equalizes the modulated baseband signal to produce a phase equalized modulated baseband signal. The IF modulator receives the phase equalized modulated baseband signal and produces a modulated IF signal having a non-constant envelope. The translational loop receives the modulated IF signal and produces a modulated RF signal having a constant envelope.
    Type: Application
    Filed: April 17, 2002
    Publication date: June 12, 2003
    Inventor: Hong Shi
  • Publication number: 20030092414
    Abstract: A translational-loop transmitter includes a local oscillator (LO) generator for generating first and second LO signals, a modulator for generating a modulated reference signal using the second LO signal, and an offset phase-locked-loop (PLL) for phase-locking an output signal to the reference signal, and for tuning the output signal in accordance with the first LO signal. The PLL includes an offset mixer in a feedback path of the PLL, and operates in accordance with a frequency plan that minimizes the effects of on- and off-channel spurs at the output of the offset mixer.
    Type: Application
    Filed: March 29, 2002
    Publication date: May 15, 2003
    Inventors: Hong Shi, Frank Carr
  • Publication number: 20030064695
    Abstract: A Radio Frequency (RF) receiver includes a low noise amplifier (LNA) and a mixer coupled to the output of the LNA. The gain of the LNA is adjusted to maximize signal-to-noise ratio of the mixer and to force the mixer to operate well within its linear region when an intermodulation interference component is present. The RF receiver includes a first received signal strength indicator (RSSI_A) coupled to the output of the mixer that measures the strength of the wideband signal at that point. A second received signal strength indicator (RSSI_B) couples after the BPF and measures the strength of the narrowband signal. The LNA gain is set based upon these signal strengths. By altering the gain of the LNA by one step and measuring the difference between a prior RSSI_B reading and a subsequent RSSI_B′ reading will indicate whether intermodulation interference is present.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventor: Hong Shi
  • Publication number: 20030064692
    Abstract: A Radio Frequency (RF) receiver includes a low noise amplifier (LNA) and a mixer coupled to the output of the LNA. The gain of the LNA is adjusted to maximize signal-to-noise ratio of the mixer and to force the mixer to operate well within its linear region when an intermodulation interference component is present. The RF receiver includes a first received signal strength indicator (RSSI_A) coupled to the output of the mixer that measures the strength of the wideband signal at that point. A second received signal strength indicator (RSSI_B) couples after the BPF and measures the strength of the narrowband signal. The LNA gain is set based upon these signal strengths. LNA gain is determined during a guard period preceding an intended time slot of a current frame and during a guard period following an intended time slot of a prior frame. The lesser of these two LNA gains is used for the intended time slot of the current frame.
    Type: Application
    Filed: March 15, 2002
    Publication date: April 3, 2003
    Inventor: Hong Shi
  • Patent number: 6507740
    Abstract: A method and apparatus for adapting the handoff threshold in a mobile communication system. The method includes the steps of evaluating the signal quality for the communication and lowering the dynamic threshold to encourage handoff if the signal quality indicator is lower than a preset quality threshold. The preset quality threshold represents a minimum acceptable signal quality level. The dynamic threshold may, in the alternative, be raised to discourage handoff if the signal quality indicator of the communication is at or near a maximum signal quality representing a signal having few errors.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: January 14, 2003
    Assignee: Ericsson Inc.
    Inventor: Hong Shi
  • Publication number: 20020102977
    Abstract: A method and apparatus for adapting the handoff threshold in a mobile communication system. The method includes the steps of evaluating the signal quality for the communication and lowering the dynamic threshold to encourage handoff if the signal quality indicator is lower than a preset quality threshold. The preset quality threshold represents a minimum acceptable signal quality level. The dynamic threshold may, in the alternative, be raised to discourage handoff if the signal quality indicator of the communication is at or near a maximum signal quality representing a signal having few errors.
    Type: Application
    Filed: May 18, 1999
    Publication date: August 1, 2002
    Inventor: HONG SHI
  • Patent number: 6360088
    Abstract: A system, method, and program for selecting an antenna from a plurality of antennas in a wireless communication system having a dynamic frequency range is disclosed. This disclosure describes how a singular quality indicator derived from a plurality of quality parameters improves diversity selections in uplink or downlink channels integrated in time or separated in frequency. The quality indicator is derived in part from a synchronization, a cyclical redundancy check, and a differential receive signal strength indicator process. The processes modify a quality indicator when a sync error, a cyclical redundancy check error, or one of a number of receive signal strength conditions is detected. When a predetermined quality threshold exceeds the quality indicator at any point in time antenna selection occurs.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: March 19, 2002
    Assignee: Ericsson Inc.
    Inventors: Hong Shi, Steve Geist
  • Publication number: 20010036209
    Abstract: Single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generates from four to more than twenty tunable WDM channels. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. Wavelength tuning over 18 nm has been demonstrated with channel spacing ranging from approximately 0.8 nm to approximately 2 nm. A second version uses approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz. A spectral correlation across the multiwavelength spectrum which can be for utilizing single stripe laser diodes as multiwavelength sources in WDM-TDM networks. A third version of multiple wavelength generation uses a fiber-array and grating. And a fourth version of wavelength generation uses a Fabry-Perot Spectral filter. Also solid state laser sources and optical fiber laser sources can be used.
    Type: Application
    Filed: April 10, 2001
    Publication date: November 1, 2001
    Applicant: University of Central Florida
    Inventors: Peter J. Delfyett, Hong Shi
  • Patent number: 6256328
    Abstract: Single-stripe GaAs/AlGaAs semiconductor optical amplifiers which simultaneously generates from four to more than twenty tunable WDM channels. A four channel version transmits approximately 12 picosecond pulses at approximately 2.5 GHz for an aggregate pulse rate of 100 GHz. Wavelength tuning over 18 nm has been demonstrated with channel spacing ranging from approximately 0.8 nm to approximately 2 nm. A second version uses approximately 20 wavelength channels, each transmitting approximately 12 picosecond pulses at a rate of approximately 600 MHz. A spectral correlation across the multiwavelength spectrum which can be for utilizing single stripe laser diodes as multiwavelength sources in WDM-TDM networks. A third version of multiple wavelength generation uses a fiber-array and grating. And a fourth version of wavelength generation uses a Fabry-Perot Spectral filter. Also solid state laser sources and optical fiber laser sources can be used.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: July 3, 2001
    Assignee: University of Central Florida
    Inventors: Peter J. Delfyett, Hong Shi
  • Patent number: 6131033
    Abstract: Methods and systems of communication reduce the internal interference associated with conducting radio communication in a wireless local loop communication system down to acceptable levels. Problems associated with internal interference are solved by providing carrier frequency rotation during time slots in a frame. A plurality of radio fixed parts are utilized for conducting radio communication with user terminals. During operation, each of a plurality of sequentially related carrier frequencies is assigned in sequential order to a respective one of the plurality of radio fixed parts. Each of the plurality of carrier frequencies is advanced during each successive time slot during operation of the wireless system. In addition, the control system controls operation of the radio fixed parts by allowing and disallowing transmission and reception in certain predetermined time slots.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: October 10, 2000
    Assignee: Ericsson, Inc.
    Inventor: Hong Shi
  • Patent number: 5950142
    Abstract: The tension in an optical fiber being drawn from a preform is monitored by sensing its motion transverse to the drawing direction and analysing the sensed motion using an autoregressive time-series model to provide a power spectrum. One of the peaks of the spectrum is identified as associated with the fundamental natural frequency of the drawn fiber and the frequency of that peak is used in a calculation of the tension of the fiber.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: September 7, 1999
    Assignee: Pirelli General plc
    Inventor: Hong Shi
  • Patent number: 5563980
    Abstract: Provided is a brushless DC motor speed controller in which the speed feedback signal needed for speed control is obtained from the commutation signals generated by the magnetic-pole sensor in the brushless DC motor. The-brushless DC motor speed controller includes an edge detector, which generates a pulse each time a rising or falling edge is detected in the signal from the magnetic-pole sensor of the brushless DC motor. A frequency multiplier is used to multiply the frequency of the pulse train from said edge detector. A frequency-to-voltage converter is used to convert the output pulse train from said frequency multiplier into a positive analog voltage, with the level of the positive analog voltage being in proportion to the speed of the brushless DC motor. A motor rotating direction detecting circuit receives the output signal from said magnetic-pole sensor and thereby detects in which direction the brushless DC motor currently rotates.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: October 8, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Tshaw-Chuang Chen, Hong-Shi Chang, Huan-Jen Yang
  • Patent number: 5519294
    Abstract: A method and device for controlling the torque of a brushless DC motor used in an electric motorcycle, in which a single current loop is employed to obtain a feedback current by a current detector from a DC bus which simplifies the construction of the circuit scheme. The device of this invention operates by two input signals; one of them is a torque command signal to generate a positive torque of the motor, and the other is brake command signal to generate a negative torque of the motor so as to operate a control brake command and to store the energy generated during a braking operation into a battery of the motorcycle, as well as to stop the rotation of the brushless DC motor within 120.degree. of its electrical angle of reversed rotation.
    Type: Grant
    Filed: August 2, 1993
    Date of Patent: May 21, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Tshaw-Chuang Chen, Huann-Jen Yung, Hong-Shi Chang, Yaw-Shih Shieh
  • Patent number: 5473725
    Abstract: The speed of a brushless DC motor driving an electric vehicle is controlled with a speed feedback signal proportional to rotation speed of the motor by processing the back electromotive force (EMF) waves of the brushless DC motor. In this method, the back EMF waves of plural phases are taken to pass the differential amplifiers for each phase, and the back EMF signals in the rising and falling regions of the back EMF waves of each phase are obtained to synthesize, by the commutation signals of a magnetic pole sensor passing the phase detecting circuit, after full-wave rectification and low-pass filtering, a [speed feedback signal. This method differs from normal speed control of a motor, in which a speed feed-back element such as a DC tachometer or an encoder is necessary for controlling the speed. This invention permits the brushless DC motor to control the speed without a feedback element such as a DC tachometer or an encoder, thereby decreasing the cost of the brushless DC motor speed control system.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: December 5, 1995
    Assignee: Industrial Technology Research Institute
    Inventors: Tshaw-Chuang Chen, Hong-Shi Chang, Huan-Jen Yang, Yaw-Shih Shieh
  • Patent number: 5341077
    Abstract: A current limiting device to limit the maximum allowable electric current to be supplied to a motor in driving an electric vehicle. The current limiting device includes (a) a first thermal switch to prevent the power switching element of the motor from being abnormally overheated, (b) a second thermal switch to prevent the motor from being abnormally overheated, and (c) a brake switch. The three switches altogether and in association with a certain hysteresis band work to switch the limits of the electric current passing through the motor between two or more predetermined electric current values. Under normal operating conditions, the limit of the current is set at a high level which is associated with a hysteresis action, and when one of the thermal switches or the brake switch is actuated, the limit of the electric current is switched to a lower value which is still associated with a hysteresis action.
    Type: Grant
    Filed: February 3, 1993
    Date of Patent: August 23, 1994
    Assignee: Industrial Technology Research Institute
    Inventors: Tshaw-Chuang Chen, Hong-Shi Chang, Huan-Jen Yang, Yaw-Shih Shieh
  • Patent number: 5226747
    Abstract: An adaptive control artificial wavemaking device comprises an air blower as shock wave source. According to the invention, the device further comprises a control system consisted of a float, a sensor, a control circuit and electromagnetic actuators; butterfly valves; and air chamber for generating shock wave. When the sensor receives signals from the flaot, the signals are transferred through the control circuit to actuate the electromagnetic actuators to control opening and closing of said butterfly valves to enable the air chamber to generate a shock wave which is in resonance with the water wave. The device may further comprises an oscillator for generating shock wave of a given frequence during starting. The device according to the invention has the advantage of similified structure, low mangufacture cost and low energy consumption, thus it may be widely used for aquatic breeding, sport, recreation and medical facilities.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: July 13, 1993
    Assignee: Tianjin University
    Inventors: Yichang Wang, Shaohong Chen, Chengdong Mu, Hong Shi, Hui Chen, Jianping Yuan