Patents by Inventor Hongfei Jia

Hongfei Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973250
    Abstract: Disclosed herein are membrane-electrode assemblies and fuel cells comprising an anode comprising a first catalyst; a cathode comprising a second catalyst; and a proton exchange membrane between the anode and cathode; wherein at least one of the proton exchange membrane, anode, and cathode comprise an antioxidant comprising yttrium doped cerium oxide and a metal doped cerium oxide that has a faster release time of cerium ions compared to yttrium doped cerium oxide.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: April 30, 2024
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Liang Wang, Hongfei Jia, Naoki Nakamura
  • Publication number: 20240039012
    Abstract: A fuel cell (FC) assembly having a stack that includes a bipolar plate and a gas diffusion layer (GDL) composed of a microporous metal foam having embedded therein a plurality of discrete microchannels or a plurality of discrete microstructures.
    Type: Application
    Filed: July 26, 2022
    Publication date: February 1, 2024
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuqing Zhou, Gaohua Zhu, Ercan M Dede, Liang Wang, Hongfei Jia, Debasish Banerjee
  • Patent number: 11834635
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 5, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20230374420
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Application
    Filed: June 1, 2023
    Publication date: November 23, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11819826
    Abstract: A dimeric ionic liquid that enhances and improves the performance and durability of a fuel cell catalyst. The dimeric ionic liquid comprises 1,1-(butane-1, 4-diyl)bis(9-methyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate. Membrane electrode assemblies (MEAs) and polymer electrolyte membrane fuel cells (PEMFCs) employing the dimeric ionic liquid are also disclosed.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: November 21, 2023
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Board of Regents, The University of Texas System
    Inventors: Liang Wang, Hongfei Jia, Joan F. Brennecke, Oscar Morales Collazo, Hisao Kato
  • Publication number: 20230340296
    Abstract: Bioactive coatings are provided with two component solvent borne resin and an enzyme dispersed therein. The unique coatings provide for enzyme dispersion in the two component solvent borne resin in aggregates with small particle sizes of up to 5 micrometers. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Application
    Filed: November 29, 2022
    Publication date: October 26, 2023
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20230343970
    Abstract: A bipolar plate-gas diffusion layer (GDL) assembly for a polymer-electrolyte-membrane fuel cell includes a flat metallic bipolar plate and a porous metal GDL adjacent to and in direct contact with the flat metallic bipolar plate. The porous metal GDL includes flow channels defined by flow channels walls with flow channel surfaces. The flow channel walls and flow channel surfaces have an average porosity generally equal to an average porosity of an interior of the porous metal GDL.
    Type: Application
    Filed: October 5, 2022
    Publication date: October 26, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Gaohua Zhu, Liang Wang, Yuqing Zhou, Debasish Banerjee, Hongfei Jia, Ercan Mehmet Dede, Hiroyuki Kawai, Masaki Ando
  • Publication number: 20230327139
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precurors in a stream of CO and H2 gas mixture.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Akron
    Inventors: Li Qin ZHOU, Kan HUANG, Hongfei JIA, Xiaochen SHEN, Zhenmeng PENG, Hisao KATO
  • Patent number: 11731110
    Abstract: A protonated dimeric ionic liquid that enhances and improves the performance of a fuel cell catalyst. The protonated dimeric ionic liquid comprises 9?9?-(butane-1,4-diyl)bis(3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium) 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate. Membrane electrode assemblies (MEAs) and polymer electrolyte membrane fuel cells (PEMFCs) employing the protonated dimeric ionic liquid are also disclosed.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: August 22, 2023
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Liang Wang, Hongfei Jia, Joan F. Brennecke, Oscar Morales Collazo, Hisao Kato
  • Patent number: 11715834
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precursors in a stream of CO and H2 gas mixture.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: August 1, 2023
    Assignees: Toyota Motor Engineering and Manufacturing North America, Inc., The University of Akron
    Inventors: Li Qin Zhou, Kan Huang, Hongfei Jia, Xiaochen Shen, Zhenmeng Peng, Hisao Kato
  • Publication number: 20230235251
    Abstract: A liquid bioactive composition is provided that includes an enzyme with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein the enzyme in the liquid bioactive coating material is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from a substrate.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 27, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20230212426
    Abstract: A process of stabilizing the activity of an enzyme against inactivation by water weathering are provided including associating one or more polymeric moieties of a polyoxyethylene having a molecular weight of 10,000 Daltons or greater with an enzyme to form a chemically modified enzyme; and dispersing said chemically modified enzyme in a base to form a water-stabilized active coating material.
    Type: Application
    Filed: December 21, 2022
    Publication date: July 6, 2023
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11692156
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: July 4, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11624044
    Abstract: A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: April 11, 2023
    Assignee: Toyota Motor Corporation
    Inventors: Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20230096034
    Abstract: A protonated dimeric ionic liquid that enhances and improves the performance of a fuel cell catalyst. The protonated dimeric ionic liquid comprises 9?9?-(butane-1, 4-diyl)bis(3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium) 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (HTBD) Membrane electrode assemblies (MEAs) and polymer electrolyte membrane fuel cells (PEMFCs) employing the protonated dimeric ionic liquid are also disclosed.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 30, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Texas at Austin
    Inventors: Liang Wang, Hongfei Jia, Joan F. Brennecke, Oscar Morales Collazo, Hisao Kato
  • Publication number: 20230092991
    Abstract: A dimeric ionic liquid that enhances and improves the performance and durability of a fuel cell catalyst. The dimeric ionic liquid comprises 1,1-(butane-1,4-diyl)bis(9-methyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (D-[MTBD][C4F9SO3]). Membrane electrode assemblies (MEAs) and polymer electrolyte membrane fuel cells (PEMFCs) employing the dimeric ionic liquid are also disclosed.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 23, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Texas at Austin
    Inventors: Liang Wang, Hongfei Jia, Joan F. Brennecke, Oscar Morales Collazo, Hisao Kato
  • Patent number: 11597853
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: March 7, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20230056498
    Abstract: Disclosed herein are membrane-electrode assemblies and fuel cells comprising an anode comprising a first catalyst; a cathode comprising a second catalyst; and a proton exchange membrane between the anode and cathode; wherein at least one of the proton exchange membrane, anode, and cathode comprise an antioxidant comprising yttrium doped cerium oxide and a metal doped cerium oxide that has a faster release time of cerium ions compared to yttrium doped cerium oxide.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 23, 2023
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Liang Wang, Hongfei Jia, Naoki Nakamura
  • Patent number: 11566149
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: January 31, 2023
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11542410
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base including an enzyme associated therein, and a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: January 3, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang