Patents by Inventor Hongfei Jia

Hongfei Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566149
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: January 31, 2023
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11542410
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base including an enzyme associated therein, and a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: January 3, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11535773
    Abstract: Bioactive coatings suitable for facilitating removal of a fingerprint when contacting the coating are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate. Also provided are processes of facilitating fingerprint removal.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: December 27, 2022
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11387464
    Abstract: An electrode catalyst for an oxygen reduction reaction including intermetallic L10-NiPtAg alloy nanoparticles having enhanced ORR activity and durability. The catalyst including intermetallic L10-NiPtAg alloy nanoparticles is synthesized by employing silver (Ag) as a dopant and annealing under specific conditions to form the intermetallic structure. In one example, the intermetallic L10-NiPtAg alloy nanoparticles are represented by the formula: NixPtyAgz wherein 0.4?x?0.6, 0.4?y?0.6, z?0.1.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: July 12, 2022
    Assignee: TOYOTA MOTOR ENGINEERING AND MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kecheng Wei, Tomoyuki Nagai, Li Qin Zhou, Hongfei Jia
  • Patent number: 11322750
    Abstract: An oxygen reduction reaction (ORR) catalyst, a membrane-electrode assembly and a polymer electrolyte membrane fuel cell containing the catalyst are provided. The ORR catalyst is a solid catalyst on a carbon support and the solid catalyst contains platinum metal or a platinum alloy metal having a surface complexed with a monodentate thiol ligand comprising an aromatic or heteroaromatic ring containing at least one of a bromide and an iodide substituent.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 3, 2022
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yuta Ikehata, Masaya Kobayashi, Tomoyuki Nagai, Hongfei Jia, Hisao Kato
  • Patent number: 11254898
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: February 22, 2022
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11236323
    Abstract: The present disclosure relates to compositions and processes in the field of self-cleaning system using digestive proteins. One composition includes a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety bound to both said digestive protein and said substrate. The processes include binding a substrate to a surface and forming a linker moiety between a digestive protein and said substrate.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: February 1, 2022
    Assignees: Toyota Motor Corporation, The University of Akron
    Inventors: Ping Wang, Minjuan Zhang, Hongfei Jia, Archana H. Trivedi, Masahiko Ishii
  • Patent number: 11225654
    Abstract: Provided are methods and compositions for self-cleaning that include a lysozyme capable of decomposing a microbe, a substrate applied to a solid surface, and a linker moiety bound to an outer surface of said substrate and an active group of said digestive protein, said linker moiety between said lysozyme and said substrate and covalently linking said lysozyme to a surface of said substrate optionally by an amide bond.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 18, 2022
    Assignees: TOYOTA MOTOR CORPORATION, THE UNIVERSITY OF AKRON
    Inventors: Ping Wang, Minjuan Zhang, Hongfei Jia, Archana H. Trivedi, Masahiko Ishii
  • Patent number: 11189851
    Abstract: A membrane electrode assembly for a polymer electrolyte membrane fuel cell includes an anodic catalyst layer, a cathodic catalyst layer, and a polymer electrolyte membrane mediating protic communication between the anodic and cathodic catalyst layers. The cathodic catalyst layer includes an ionic liquid, 1-methyl-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidin-9-ium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate, in admixture with carbon-supported particles of platinum or a platinum alloy. The ionic liquid improves performance in both high moisture and low moisture operating conditions.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: November 30, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Kan Huang, Hongfei Jia, Hisao Kato
  • Publication number: 20210253980
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 19, 2021
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20210202957
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precurors in a stream of CO and H2 gas mixture.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Kan Huang, Hongfei Jia, Xiaochen Shen, Zhenmeng Peng, Hisao Kato
  • Patent number: 11043678
    Abstract: Improved oxygen reduction reaction catalysts include octahedral nanoparticles of a platinum-copper-nickel alloy contacted by a secondary ionomer. The alloy can have a formula of Pt2CuNi, and the secondary ionomer can include an ionic liquid, 1-methyl-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidin-9-ium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate ([MTBD][C4F9SO3]). The oxygen reductions catalysts have improved stability, as well as mass area and specific area comparted to competing catalysts.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: June 22, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, The University of Akron
    Inventors: Kan Huang, Li Q. Zhou, Hongfei Jia, Hisao Kato, Zhenmeng Peng, Xiaochen Shen
  • Publication number: 20210184227
    Abstract: An electrode catalyst for an oxygen reduction reaction including intermetallic L10-NiPtAg alloy nanoparticles having enhanced ORR activity and durability. The catalyst including intermetallic L10-NiPtAg alloy nanoparticles is synthesized by employing silver (Ag) as a dopant and annealing under specific conditions to form the intermetallic structure. In one example, the intermetallic L10-NiPtAg alloy nanoparticles are represented by the formula: NixPtyAgz wherein 0.4?x?0.6, 0.4?y?0.6, z?0.1.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Applicant: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventors: Kecheng Wei, Tomoyuki Nagai, Li Qin Zhou, Hongfei Jia
  • Patent number: 11015149
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: May 25, 2021
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 10988714
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 27, 2021
    Assignees: Regents of the University of Minnesota, Toyota Motor Corporation
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 10927465
    Abstract: An oxygen evolution catalyst of the formula: Sr2MCoO5 where M=Al, Ga wherein M is bonded with four oxygen atoms to form a tetrahedron. The catalyst is operated at a potential of less than 1.58 volts vs. RHE at a current density of 50 ?A/cm2 for a pH of 7-13. The catalyst is operated at a potential of less than 1.55 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 13. The oxygen evolution catalyst of the formula: Sr2GaCoO5 wherein the catalyst is operated at a potential of less than 1.53 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 7. The oxygen evolution catalyst of formula: Sr2GaCoO5 wherein the catalyst maintains a current within 94% after 300 minutes at a potential of 1.645 volts vs. RHE wherein the current is greater than 1 milliamp and a pH of 7.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 23, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Krishna Reddy Gunugunuri, Chen Ling, Hongfei Jia
  • Patent number: 10883069
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: January 5, 2021
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 10882996
    Abstract: A method for forming a multilayer thin film having a crystalline metal oxide layer, the method including: encapsulating at least one encapsulated layer of the multilayer thin film in a wet chemical composition by wet chemical methods; and crystallizing the wet chemical composition by microwave hydrothermal treatment to form a crystalline metal oxide layer encapsulating the at least one encapsulated layer of the multilayer thin film.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 5, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North Amercia, Inc.
    Inventors: Songtao Wu, Debasish Banerjee, Hongfei Jia, Krishna Reddy Gunugunuri
  • Patent number: 10875015
    Abstract: Methods for making porous materials having metal alloy nanoparticles formed therein are described herein. By preparing a porous material and delivering the precursor solutions under vacuum, the metal precursors can be uniformly embedded within the pores of the porous material. Once absorption is complete, the porous material can be heated in the presence of one or more functional gases to reduce the metal precursors to metal alloy nanoparticles, and embed the metal alloy nanoparticles inside of the pores. As such, the metal alloy nanoparticles can be formed within the pores, while avoiding surface wetting and absorption problems which can occur with small pores.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 29, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, The University of Akron
    Inventors: Li Qin Zhou, Kan Huang, Tomoyuki Nagai, Hongfei Jia, Hisao Kato, Xiaochen Shen, Zhenmeng Peng
  • Publication number: 20200392432
    Abstract: A substrate or coating is provided that includes a protease with enzymatic activity toward a component of a biological stain. Also provided is a process for facilitating the removal of a biological stain is provided wherein an inventive substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.
    Type: Application
    Filed: July 20, 2020
    Publication date: December 17, 2020
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang