Patents by Inventor Hsin Chiao

Hsin Chiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468549
    Abstract: A nitrogen-containing semiconductor device including a first type doped semiconductor layer, a multiple quantum well layer and a second type doped semiconductor layer is provided. The multiple quantum well layer includes barrier layers and well layers, and the well layers and the barrier layers are arranged alternately. The multiple quantum well layer is located between the first type doped semiconductor layer and the second type doped semiconductor layer, and one of the well layers of the multiple quantum well layer is connected to the second type doped semiconductor layer.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: November 5, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Hsin-Chiao Fang, Cheng-Hsueh Lu, Cheng-Hung Lin, Chi-Hao Cheng, Chi-Feng Huang
  • Patent number: 10229977
    Abstract: A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0?x?1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm?3 and carbon having a concentration greater than 5×1017 cm?3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0?y?1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 12, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Hsueh Lu, Hsin-Chiao Fang, Chi-Hao Cheng, Chih-Feng Lu, Chi-Feng Huang
  • Publication number: 20180350923
    Abstract: A transistor including a substrate, a source, a drain, an active portion, a fin-shaped gate, and an insulation layer is provided. The source is located on the substrate. The drain is located on the substrate. The active portion connects the source and the drain. The fin-shaped gate wraps the active portion. A first portion of the insulation layer separates the fin-shaped gate from the active portion, a second portion of the insulation layer separates the fin-shaped gate from the substrate, a third portion of the insulation layer separates the fin-shaped gate from the source and from the drain, and a fourth portion of the insulation layer is located on a surface of the fin-shaped gate facing away from the active portion. Here, the insulation layer is integrally formed.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Hsin Chiao, Wei-Tsung Chen
  • Patent number: 10079283
    Abstract: A manufacturing method of a transistor is provided, and the method includes: providing a base; forming a fin-shaped gate on the base; covering the fin-shaped gate with an insulation layer; providing a substrate; forming a partially cured sol-gel on the substrate; inserting the fin-shaped gate into the partially cured sol-gel, so that a portion of the fin-shaped gate is uncovered by the partially cured sol-gel; after inserting the fin-shaped gate into the partially cured sol-gel, curing the partially cured sol-gel; and processing a portion of the partially cured sol-gel not overlapping with the fin-shaped gate to increase conductivity of the portion of the partially cured sol-gel.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 18, 2018
    Assignee: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Hsin Chiao, Wei-Tsung Chen
  • Publication number: 20180083162
    Abstract: A nitrogen-containing semiconductor device including a first type doped semiconductor layer, a multiple quantum well layer and a second type doped semiconductor layer is provided. The multiple quantum well layer includes barrier layers and well layers, and the well layers and the barrier layers are arranged alternately. The multiple quantum well layer is located between the first type doped semiconductor layer and the second type doped semiconductor layer, and one of the well layers of the multiple quantum well layer is connected to the second type doped semiconductor layer.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Hsin-Chiao Fang, Cheng-Hsueh Lu, Cheng-Hung Lin, Chi-Hao Cheng, Chi-Feng Huang
  • Publication number: 20180083108
    Abstract: A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0?x?1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm?3 and carbon having a concentration greater than 5×1017 cm?3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0?y?1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Hsueh Lu, Hsin-Chiao Fang, Chi-Hao Cheng, Chih-Feng Lu, Chi-Feng Huang
  • Publication number: 20170263795
    Abstract: Methods of fabricating emitter regions of solar cells are described. Methods of forming layers on substrates of solar cells, and the resulting solar cells, are also described.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: David D. Smith, Helen Liu, Tim Dennis, Jane Manning, Hsin-Chiao Luan, Ann Waldhauer, Genevieve A. Solomon, Brenda Pagulayan Malgapu, Joseph Ramirez
  • Patent number: 9640716
    Abstract: A multiple quantum well structure includes a plurality of well-barrier sets arranged along a direction. Each of the well-barrier sets includes a barrier layer, at least one intermediate level layer, and a well layer. A bandgap of the barrier layer is greater than an average bandgap of the intermediate level layer, and the average bandgap of the intermediate level layer is greater than a bandgap of the well layer. The barrier layers, the intermediate level layers, and the well layers of the well-barrier sets are stacked by turns. Thicknesses of at least parts of the well layers in the direction gradually decrease along the direction, and thicknesses of at least parts of the intermediate level layers in the direction gradually increase along the direction. A method for manufacturing a multiple quantum well structure is also provided.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: May 2, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Hsin-Chiao Fang, Chi-Hao Cheng
  • Patent number: 9577120
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: February 21, 2017
    Assignee: SunPower Corporation
    Inventors: Hsin-Chiao Luan, Denis De Ceuster
  • Publication number: 20170033260
    Abstract: A multiple quantum well structure includes a plurality of well-barrier sets arranged along a direction. Each of the well-barrier sets includes a barrier layer, at least one intermediate level layer, and a well layer. A bandgap of the barrier layer is greater than an average bandgap of the intermediate level layer, and the average bandgap of the intermediate level layer is greater than a bandgap of the well layer. The barrier layers, the intermediate level layers, and the well layers of the well-barrier sets are stacked by turns. Thicknesses of at least parts of the well layers in the direction gradually decrease along the direction, and thicknesses of at least parts of the intermediate level layers in the direction gradually increase along the direction. A method for manufacturing a multiple quantum well structure is also provided.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Chi-Feng Huang, Hsin-Chiao Fang, Chi-Hao Cheng
  • Patent number: 9556512
    Abstract: A system for substrate deposition is disclosed. The system includes a wafer pallet and an anode. The wafer pallet has a bottom and a top. The top of the wafer pallet is configured to hold a substrate wafer. The anode has a substantially fixed position relative to the wafer pallet and is configured to move with the wafer pallet through the deposition chamber. The anode is electrically isolated from the substrate wafer.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: January 31, 2017
    Assignee: SunPower Corporation
    Inventors: Peter John Cousins, Hsin-Chiao Luan, Thomas Pass, John Ferrer, Rex Gallardo, Stephen F. Meyer
  • Publication number: 20170018616
    Abstract: A manufacturing method of a transistor is provided, and the method includes: providing a base; forming a fin-shaped gate on the base; covering the fin-shaped gate with an insulation layer; providing a substrate; forming a partially cured sol-gel on the substrate; inserting the fin-shaped gate into the partially cured sol-gel, so that a portion of the fin-shaped gate is uncovered by the partially cured sol-gel; after inserting the fin-shaped gate into the partially cured sol-gel, curing the partially cured sol-gel; and processing a portion of the partially cured sol-gel not overlapping with the fin-shaped gate to increase conductivity of the portion of the partially cured sol-gel.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Applicant: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Hsin Chiao, Wei-Tsung Chen
  • Publication number: 20160020286
    Abstract: A transistor including a substrate, a source, a drain, an active portion, a fin-shaped gate, and an insulation layer is provided. The source is located on the substrate. The drain is located on the substrate. The active portion connects the source and the drain. The fin-shaped gate wraps the active portion. A first portion of the insulation layer separates the fin-shaped gate from the active portion, a second portion of the insulation layer separates the fin-shaped gate from the substrate, a third portion of the insulation layer separates the fin-shaped gate from the source and from the drain, and a fourth portion of the insulation layer is located on a surface of the fin-shaped gate facing away from the active portion. The insulation layer is integrally formed. A manufacturing method of a transistor is also provided.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 21, 2016
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Hsin Chiao, Wei-Tsung Chen
  • Patent number: 9153725
    Abstract: A solar cell includes a crystalline silicon semiconductor substrate, an intrinsic amorphous silicon semiconductor layer, an amorphous silicon semiconductor layer and a transparent conductive layer. The crystalline silicon semiconductor substrate possesses a first doped type and a trench is formed thereon to form an enclosed area to define a first electrode region in the enclosed area and a second electrode region out of the enclosed area. The intrinsic amorphous silicon semiconductor layer, the amorphous silicon semiconductor layer and the transparent conductive layer are formed sequentially on the crystalline silicon semiconductor substrate and in the trench. Having discontinuity in the trench, the amorphous silicon semiconductor layer, the amorphous silicon semiconductor layer and the transparent conductive layer provide an isolation function between the previously defined first and second electrode regions.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: October 6, 2015
    Assignee: NEO SOLAR POWER CORP.
    Inventors: Jau-Min Ding, Hsin-Chiao Luan, Kun-Chih Lin, Chih-Hung Liao, Yi-Wen Tseng
  • Publication number: 20150179858
    Abstract: A solar cell includes a crystalline silicon semiconductor substrate, an intrinsic amorphous silicon semiconductor layer, an amorphous silicon semiconductor layer and a transparent conductive layer. The crystalline silicon semiconductor substrate possesses a first doped type and a trench is formed thereon to form an enclosed area to define a first electrode region in the enclosed area and a second electrode region out of the enclosed area. The intrinsic amorphous silicon semiconductor layer, the amorphous silicon semiconductor layer and the transparent conductive layer are formed sequentially on the crystalline silicon semiconductor substrate and in the trench. Having discontinuity in the trench, the amorphous silicon semiconductor layer, the amorphous silicon semiconductor layer and the transparent conductive layer provide an isolation function between the previously defined first and second electrode regions.
    Type: Application
    Filed: August 21, 2014
    Publication date: June 25, 2015
    Inventors: JAU-MIN DING, HSIN-CHIAO LUAN, KUN-CHIH LIN, CHIH-HUNG LIAO, YI-WEN TSENG
  • Publication number: 20150056273
    Abstract: A microbubble ultrasound contrast agent for external use is provided. The microbubble ultrasound contrast agent applied externally can safely and efficiently enhance the permeation and absorption of the drug or small molecules in the local region of the body surface. A method of preparing the microbubble ultrasound contrast agent and a method of enhancing percutaneous absorption of a chemical or small molecules through a topical region of a biological body surface are provided.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 26, 2015
    Inventors: Ai-Ho LIAO, Chih-Hung WANG, Yi-Lei HSIEH, Hsin-Chiao HO
  • Publication number: 20140373910
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 25, 2014
    Applicant: SUNPOWER CORPORATION
    Inventors: Hsin-Chiao LUAN, Denis DE CEUSTER
  • Patent number: 8748736
    Abstract: A multilayer anti-reflection structure for a backside contact solar cell. The anti-reflection structure may be formed on a front side of the backside contact solar cell. The anti-reflection structure may include a passivation level, a high optical absorption layer over the passivation level, and a low optical absorption layer over the high optical absorption layer. The passivation level may include silicon dioxide thermally grown on a textured surface of the solar cell substrate, which may be an N-type silicon substrate. The high optical absorption layer may be configured to block at least 10% of UV radiation coming into the substrate. The high optical absorption layer may comprise high-k silicon nitride and the low optical absorption layer may comprise low-k silicon nitride.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 10, 2014
    Assignee: SunPower Corporation
    Inventors: Hsin-Chiao Luan, Denis De Ceuster
  • Publication number: 20140014499
    Abstract: A system for substrate deposition is disclosed. The system includes a wafer pallet and an anode. The wafer pallet has a bottom and a top. The top of the wafer pallet is configured to hold a substrate wafer. The anode has a substantially fixed position relative to the wafer pallet and is configured to move with the wafer pallet through the deposition chamber. The anode is electrically isolated from the substrate wafer.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 16, 2014
    Inventors: Peter John Cousins, Hsin-Chiao Luan, Thomas Pass, John Ferrer, Rex Gallardo, Stephen F. Meyer
  • Patent number: 8557093
    Abstract: A system for substrate deposition. The system includes a wafer pallet and an anode. The wafer pallet has a bottom and a top. The top of the wafer pallet is configured to hold a substrate wafer. The anode has a substantially fixed position relative to the wafer pallet and is configured to move with the wafer pallet through the deposition chamber. The anode is electrically isolated from the substrate wafer.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: October 15, 2013
    Assignee: SunPower Corporation
    Inventors: Peter Cousins, Hsin-Chiao Luan, Thomas Pass, John Ferrer, Rex Gallardo, Stephen F. Meyer