Patents by Inventor Hsu-Yu Chang

Hsu-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11075286
    Abstract: A transistor including a source and a drain each formed in a substrate; a channel disposed in the substrate between the source and drain, wherein the channel includes opposing sidewalls with a distance between the opposing sidewalls defining a width dimension of the channel and wherein the opposing sidewalls extend a distance below a surface of the substrate; and a gate electrode on the channel. A method of forming a transistor including forming a source and a drain in an area of a substrate; forming a source contact on the source and a drain contact on the drain; after forming the source contact and the drain contact, forming a channel in the substrate in an area between the source and drain, the channel including a body having opposing sidewalls separated by a length dimension; and forming a gate contact on the channel.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: July 27, 2021
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Rahul Ramaswamy, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20210193844
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a source, a drain, and a semiconductor channel between the source and the drain. In an embodiment, the semiconductor channel has a non-uniform strain through a thickness of the semiconductor channel. In an embodiment, the semiconductor device further comprises a gate stack around the semiconductor channel.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Inventors: Rahul RAMASWAMY, Hsu-Yu CHANG, Babak FALLAHAZAD, Hsiao-Yuan WANG, Ting CHANG, Tanuj TRIVEDI, Jeong Dong KIM, Nidhi NIDHI, Walid M. HAFEZ
  • Publication number: 20210184001
    Abstract: Embodiments disclosed herein include nanowire and nanoribbon devices with non-uniform dielectric thicknesses. In an embodiment, the semiconductor device comprises a substrate and a plurality of first semiconductor layers in a vertical stack over the substrate. The first semiconductor layers may have a first spacing. In an embodiment, a first dielectric surrounds each of the first semiconductor layers, and the first dielectric has a first thickness. The semiconductor device may further comprise a plurality of second semiconductor layers in a vertical stack over the substrate, where the second semiconductor layers have a second spacing that is greater than the first spacing. In an embodiment a second dielectric surrounds each of the second semiconductor layers, and the second dielectric has a second thickness that is greater than the first thickness.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Tanuj TRIVEDI, Rahul RAMASWAMY, Jeong Dong KIM, Ting CHANG, Walid M. HAFEZ, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Publication number: 20210183857
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such semiconductor devices. In an embodiment, the semiconductor device comprises a substrate, and a first transistor over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel above the substrate, a first gate dielectric surrounding the first semiconductor channel, and a first gate electrode over the first gate dielectric. In an embodiment, the semiconductor device further comprises a second transistor over the substrate. In an embodiment, the second transistor comprises a second semiconductor channel above the substrate, a second gate dielectric surrounding the second semiconductor channel, where the second gate dielectric is different than the first gate dielectric, and a second gate electrode over the second gate dielectric, where the first gate electrode and the second gate electrode comprise the same material.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Walid M. HAFEZ, Rahul RAMASWAMY, Tanuj TRIVEDI, Jeong Dong KIM, Ting CHANG, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Publication number: 20210184045
    Abstract: Embodiments disclosed herein include nanoribbon and nanowire semiconductor devices. In an embodiment, the semiconductor device comprises a nanowire disposed above a substrate. In an embodiment, the nanowire has a first dopant concentration, and the nanowire comprises a pair of tip regions on opposite ends of the nanowire. In an embodiment, the tip regions comprise a second dopant concentration that is greater than the first dopant concentration. In an embodiment, the semiconductor device further comprises a gate structure over the nanowire. In an embodiment, the gate structure is wrapped around the nanowire, and the gate structure defines a channel region of the device. In an embodiment, a pair of source/drain regions are on opposite sides of the gate structure, and both source/drain regions contact the nanowire.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Rahul RAMASWAMY, Walid M. HAFEZ, Nidhi NIDHI, Ting CHANG, Hsu-Yu CHANG, Tanuj TRIVEDI, Jeong Dong KIM, Babak FALLAHAZAD
  • Publication number: 20210184000
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, and a first transistor of a first conductivity type over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel, and a first gate electrode around the first semiconductor channel. In an embodiment, the semiconductor device further comprises a second transistor of a second conductivity type above the first transistor. The second transistor comprises a second semiconductor channel, and a second gate electrode around the second semiconductor channel. In an embodiment, the second gate electrode and the first gate electrode comprise different materials.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Rahul RAMASWAMY, Walid M. HAFEZ, Tanuj TRIVEDI, Jeong Dong KIM, Ting CHANG, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Publication number: 20210184051
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, a first transistor over the substrate, where the first transistor comprises a vertical stack of first semiconductor channels, and a first gate dielectric surrounding each of the first semiconductor channels. The first gate dielectric has a first thickness. In an embodiment, the semiconductor device further comprises a second transistor over the substrate, where the second transistor comprises a second semiconductor channel. The second semiconductor channel comprises pair of sidewalls and a top surface. In an embodiment, a second gate dielectric is over the pair of sidewalls and the top surface of the fin, where the second gate dielectric has a second thickness that is greater than the first thickness.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Tanuj TRIVEDI, Rahul RAMASWAMY, Jeong Dong KIM, Ting CHANG, Walid M. HAFEZ, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Publication number: 20210184032
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a substrate, a source region over the substrate, a drain region over the substrate, and a semiconductor body extending from the source region to the drain region. In an embodiment, the semiconductor body has a first region with a first conductivity type and a second region with a second conductivity type. In an embodiment, the semiconductor device further comprises a gate structure over the first region of the semiconductor body, where the gate structure is closer to the source region than the drain region.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Nidhi NIDHI, Rahul RAMASWAMY, Walid M. HAFEZ, Hsu-Yu CHANG, Ting CHANG, Babak FALLAHAZAD, Tanuj TRIVEDI, Jeong Dong KIM
  • Publication number: 20210183850
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a semiconductor substrate and a source. The source has a first conductivity type and a first insulator separates the source from the semiconductor substrate. The semiconductor device further comprises a drain. The drain has a second conductivity type that is opposite from the first conductivity type, and a second insulator separates the drain from the semiconductor substrate. In an embodiment, the semiconductor further comprises a semiconductor body between the source and the drain, where the semiconductor body is spaced away from the semiconductor substrate.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventors: Nidhi NIDHI, Rahul RAMASWAMY, Walid M. HAFEZ, Hsu-Yu CHANG, Ting CHANG, Babak FALLAHAZAD, Tanuj TRIVEDI, Jeong Dong KIM, Ayan KAR, Benjamin ORR
  • Patent number: 10964690
    Abstract: Techniques are disclosed for forming semiconductor structures including resistors between gates on self-aligned gate edge architecture. A semiconductor structure includes a first semiconductor fin extending in a first direction, and a second semiconductor fin adjacent to the first semiconductor fin, extending in the first direction. A first gate structure is disposed proximal to a first end of the first semiconductor fin and over the first semiconductor fin in a second direction, orthogonal to the first direction, and a second gate structure is disposed proximal to a second end of the first semiconductor fin and over the first semiconductor fin in the second direction. A first structure comprising isolation material is centered between the first and second semiconductor fins. A second structure comprising resistive material is disposed in the first structure, the second structure extending at least between the first gate structure and the second gate structure.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Hsu-Yu Chang, Neville L. Dias, Rahul Ramaswamy, Nidhi Nidhi, Chen-Guan Lee
  • Patent number: 10930729
    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Rahul Ramaswamy, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 10854607
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L Dias, Chanaka D Munasinghe
  • Patent number: 10854757
    Abstract: A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Hsu-Yu Chang, Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 10811751
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming the electromagnetic waveguide. In an embodiment the electromagnetic waveguide includes a first spacer and a second spacer. In an embodiment, the first and second spacer each have a reentrant profile. The electromagnetic waveguide may also include a conductive body formed between in the first and second spacer, and a void formed within the conductive body. In an additional embodiment, the electromagnetic waveguide may include a first spacer and a second spacer. Additionally, the electromagnetic waveguide may include a first portion of a conductive body formed along sidewalls of the first and second spacer and a second portion of the conductive body formed between an upper portion of the first portion of the conductive body. In an embodiment, the first portion of the conductive body and the second portion of the conductive body define a void through the electromagnetic waveguide.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman Olac-Vaw, Chen-Guan Lee
  • Patent number: 10763209
    Abstract: A MOS antifuse with an accelerated dielectric breakdown induced by a void or seam formed in the electrode. In some embodiments, the programming voltage at which a MOS antifuse undergoes dielectric breakdown is reduced through intentional damage to at least part of the MOS antifuse dielectric. In some embodiments, damage may be introduced during an etchback of an electrode material which has a seam formed during backfilling of the electrode material into an opening having a threshold aspect ratio. In further embodiments, a MOS antifuse bit-cell includes a MOS transistor and a MOS antifuse. The MOS transistor has a gate electrode that maintains a predetermined voltage threshold swing, while the MOS antifuse has a gate electrode with a void accelerated dielectric breakdown.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Roman Olac-Vaw, Walid Hafez, Chia-Hong Jan, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu, Neville Dias
  • Patent number: 10761264
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming electromagnetic waveguides. In an embodiment, the electromagnetic waveguide may include a first semiconductor fin extending up from a substrate and a second semiconductor fin extending up from the substrate. The fins may be bent towards each other so that a centerline of the first semiconductor fin and a centerline of the second semiconductor fin extend from the substrate at a non-orthogonal angle. Accordingly, a cavity may be defined by the first semiconductor fin, the second semiconductor fin, and a top surface of the substrate. Embodiments of the invention may include a metallic layer and a cladding layer lining the surfaces of the cavity. Additional embodiments may include a core formed in the cavity.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 10756210
    Abstract: A transistor device including a transistor including a body disposed on a substrate, a gate stack contacting at least two adjacent sides of the body and a source and a drain on opposing sides of the gate stack and a channel defined in the body between the source and the drain, wherein a conductivity of the channel is similar to a conductivity of the source and the drain. An input/output (IO) circuit including a driver circuit coupled to the logic circuit, the driver circuit including at least one transistor device is described. A method including forming a channel of a transistor device on a substrate including an electrical conductivity; forming a source and a drain on opposite sides of the channel, wherein the source and the drain include the same electrical conductivity as the channel; and forming a gate stack on the channel.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 25, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Hsu-Yu Chang, Neville L. Dias, Rahul Ramaswamy, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200251471
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L. Dias, Chanaka D. Munasinghe
  • Patent number: 10643999
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 5, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L Dias, Chanaka D Munasinghe
  • Publication number: 20200066907
    Abstract: A transistor device including a transistor including a body disposed on a substrate, a gate stack contacting at least two adjacent sides of the body and a source and a drain on opposing sides of the gate stack and a channel defined in the body between the source and the drain, wherein a conductivity of the channel is similar to a conductivity of the source and the drain. An input/output (IO) circuit including a driver circuit coupled to the logic circuit, the driver circuit including at least one transistor device is described. A method including forming a channel of a transistor device on a substrate including an electrical conductivity; forming a source and a drain on opposite sides of the channel, wherein the source and the drain include the same electrical conductivity as the channel; and forming a gate stack on the channel.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 27, 2020
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Hsu-Yu CHANG, Neville L. DIAS, Rahul RAMASWAMY, Roman W. OLAC-VAW, Chen-Guan LEE