Patents by Inventor Hsueh-Chang Sung

Hsueh-Chang Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240363753
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Inventors: Kun-Mu Li, Hsueh-Chang Sung
  • Publication number: 20240363443
    Abstract: A semiconductor device includes a first device region and a second device region. The first device region includes a first source/drain region extending from a substrate and a first and a second pair of spacers. The first source/drain region extends between the first pair of spacers and the second pair of spacers. The first pair of spacers and the second pair of spacers have a first height. The second device region includes a second and a third source/drain region extending from the substrate and a third and a fourth pair of spacers. The third source/drain region is separate from the second source/drain region. The second source/drain region extends between the third pair of spacers. The third source/drain region extends between the fourth pair of spacers. The third pair of spacers and the fourth pair of spacers have a second height greater than the first height.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Li-Li Su, Yee-Chia Yeo
  • Patent number: 12112986
    Abstract: A device includes a fin over a substrate, the fin including a first end and a second end, wherein the first end of the fin has a convex profile, an isolation region adjacent the fin, a gate structure along sidewalls of the fin and over the top surface of the fin, a gate spacer laterally adjacent the gate structure, and an epitaxial region adjacent the first end of the fin.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: October 8, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Mu Li, Heng-Wen Ting, Hsueh-Chang Sung, Yen-Ru Lee, Chien-Wei Lee
  • Patent number: 12074071
    Abstract: A semiconductor device includes a first device region and a second device region. The first device region includes a first source/drain region extending from a substrate and a first and a second pair of spacers. The first source/drain region extends between the first pair of spacers and the second pair of spacers. The first pair of spacers and the second pair of spacers have a first height. The second device region includes a second and a third source/drain region extending from the substrate and a third and a fourth pair of spacers. The third source/drain region is separate from the second source/drain region. The second source/drain region extends between the third pair of spacers. The third source/drain region extends between the fourth pair of spacers. The third pair of spacers and the fourth pair of spacers have a second height greater than the first height.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: August 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Li-Li Su, Yee-Chia Yeo
  • Publication number: 20240274667
    Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one or more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.
    Type: Application
    Filed: April 24, 2024
    Publication date: August 15, 2024
    Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
  • Patent number: 12062720
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
    Type: Grant
    Filed: March 20, 2023
    Date of Patent: August 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Mu Li, Hsueh-Chang Sung
  • Patent number: 12034061
    Abstract: A method for forming a semiconductor structure includes forming a gate structure over a substrate. The method also includes forming a spacer on a sidewall of the gate structure. The method also includes forming a source/drain recess beside the spacer. The method also includes treating the source/drain recess and partially removing the spacers in a first cleaning process. The method also includes treating the source/drain recess with a plasma process after performing the first cleaning process. The method also includes treating the source/drain recess in a second cleaning process after treating the source/drain recess with the plasma process. The method also includes forming a source/drain structure in the source/drain recess after performing the second cleaning process.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: July 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Wei Lee, Yen-Ru Lee, Hsueh-Chang Sung, Yee-Chia Yeo
  • Publication number: 20240213330
    Abstract: Embodiments provide a way of treating source/drain recesses with a high heat treatment and an optional hydrogen plasma treatment. The high heat treatment smooths the surfaces inside the recesses and remove oxides and etching byproducts. The hydrogen plasma treatment enlarges the recesses vertically and horizontally and inhibits further oxidation of the surfaces in the recesses.
    Type: Application
    Filed: February 6, 2024
    Publication date: June 27, 2024
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee
  • Patent number: 12002854
    Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one ore more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: June 4, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
  • Patent number: 11948840
    Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first thickness.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
  • Publication number: 20240088266
    Abstract: A fin structure on a substrate is disclosed. The fin structure can comprises a first epitaxial region and a second epitaxial region separated by a dielectric region, a merged epitaxial region on the first epitaxial region and the second epitaxial region, an epitaxial buffer region on a top surface of the merged epitaxial region, and an epitaxial capping region on the buffer epitaxial region and side surfaces of the merged epitaxial region.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang SUNG, Kun-Mu LI
  • Patent number: 11929401
    Abstract: Embodiments provide a way of treating source/drain recesses with a high heat treatment and an optional hydrogen plasma treatment. The high heat treatment smooths the surfaces inside the recesses and remove oxides and etching byproducts. The hydrogen plasma treatment enlarges the recesses vertically and horizontally and inhibits further oxidation of the surfaces in the recesses.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee
  • Patent number: 11888046
    Abstract: A fin structure on a substrate is disclosed. The fin structure can comprises a first epitaxial region and a second epitaxial region separated by a dielectric region, a merged epitaxial region on the first epitaxial region and the second epitaxial region, an epitaxial buffer region on a top surface of the merged epitaxial region, and an epitaxial capping region on the buffer epitaxial region and side surfaces of the merged epitaxial region.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li
  • Publication number: 20230402326
    Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first t
    Type: Application
    Filed: August 8, 2023
    Publication date: December 14, 2023
    Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
  • Publication number: 20230369129
    Abstract: A method includes forming a gate structure over fins protruding from a semiconductor substrate; forming an isolation region surrounding the fins; depositing a spacer layer over the gate structure and over the fins, wherein the spacer layer fills the regions extending between pairs of adjacent fins; performing a first etch on the spacer layer, wherein after performing the first etch, first remaining portions of the spacer layer that are within inner regions extending between pairs of adjacent fins have a first thickness and second remaining portions of the spacer layer that are not within the inner regions have a second thickness less than the first thickness; and forming an epitaxial source/drain region adjacent the gate structure and extending over the fins, wherein portions of the epitaxial source/drain region within the inner regions are separated from the first remaining portions of the spacer layer.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Yee-Chia Yeo
  • Publication number: 20230369491
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a gate structure arranged over a substrate and a source/drain region arranged within the substrate along a side of the gate structure. The source/drain region includes a first layer lining interior sidewalls and a horizontally extending surface of the substrate, and a second layer lining interior sidewalls and a horizontally extending surface of the first layer. The first layer has a dopant with a first dopant concentration that continually decreases from an outermost sidewall of the first layer facing the substrate to one of the interior sidewalls of the first layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20230352589
    Abstract: A method includes forming a semiconductor fin over a substrate, etching the semiconductor fin to form a recess, wherein the recess extends into the substrate, and forming a source/drain region in the recess, wherein forming the source/drain region includes epitaxially growing a first semiconductor material on sidewalls of the recess, wherein the first semiconductor material includes silicon germanium, wherein the first semiconductor material has a first germanium concentration from 10 to 40 atomic percent, epitaxially growing a second semiconductor material over the first semiconductor material, the second semiconductor material including silicon germanium, wherein the second semiconductor material has a second germanium concentration that is greater than the first germanium concentration, and epitaxially growing a third semiconductor material over the second semiconductor material, the third semiconductor material including silicon germanium, wherein the third semiconductor material has a third germanium con
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Inventors: Kun-Mu Li, Heng-Wen Ting, Yen-Ru Lee, Hsueh-Chang Sung
  • Patent number: 11804408
    Abstract: A method includes forming a gate structure over fins protruding from a semiconductor substrate; forming an isolation region surrounding the fins; depositing a spacer layer over the gate structure and over the fins, wherein the spacer layer fills the regions extending between pairs of adjacent fins; performing a first etch on the spacer layer, wherein after performing the first etch, first remaining portions of the spacer layer that are within inner regions extending between pairs of adjacent fins have a first thickness and second remaining portions of the spacer layer that are not within the inner regions have a second thickness less than the first thickness; and forming an epitaxial source/drain region adjacent the gate structure and extending over the fins, wherein portions of the epitaxial source/drain region within the inner regions are separated from the first remaining portions of the spacer layer.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Yee-Chia Yeo
  • Patent number: 11749752
    Abstract: The present disclosure relates to a method of forming a transistor device. The method may be performed by forming a gate structure onto a semiconductor substrate and forming a source/drain recess within the semiconductor substrate adjacent to a side of the gate structure. One or more strain inducing materials are formed within the source/drain recess. The one or more strain inducing materials include a strain inducing component with a strain inducing component concentration profile that continuously decreases from a bottommost surface of the one or more strain inducing materials to a position above the bottommost surface. The bottommost surface contacts the semiconductor substrate.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20230275153
    Abstract: A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee, Jyun-Chih Lin, Tzu-Hsiang Hsu, Feng-Cheng Yang