Patents by Inventor Hsueh-Chang Sung

Hsueh-Chang Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230011474
    Abstract: A method includes etching a semiconductor substrate to form a trench between a first semiconductor strip and a second semiconductor strip. The first semiconductor strip has a first width at about 5 nm below a top of the first semiconductor strip and a second width at about 60 nm below the top of the first semiconductor strip. The first width is smaller than about 5 nm, and the second width is smaller than about 14.5 nm. The trench is filled with dielectric materials to form an isolation region, which is recessed to have a depth. A top portion of the first semiconductor strip protrudes higher than the isolation region to form a protruding fin. The protruding fin has a height smaller than the depth. A gate stack is formed to extend on a sidewall and a top surface of the protruding fin.
    Type: Application
    Filed: January 17, 2022
    Publication date: January 12, 2023
    Inventors: De-Wei Yu, Ming-Feng Hsieh, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo, Chien-Chia Cheng
  • Publication number: 20220376049
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Publication number: 20220352346
    Abstract: A method includes etching a trench in a substrate adjacent to a gate structure, wherein the trench includes a bottom surface and a tip portion extending under a spacer of the gate structure. The method further includes epitaxially growing a first semiconductor material in the trench, wherein the first semiconductor material covers an entirety of the bottom surface of the trench, and the first semiconductor material grows in the tip portion. The method further includes epitaxially growing a second semiconductor material in the trench, wherein the second semiconductor material is different from the first semiconductor material, the second semiconductor material covers the first semiconductor material, and the second semiconductor material directly contacts the substrate between the bottom surface of the trench and the tip portion.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Tsz-Mei KWOK, Hsueh-Chang SUNG, Kuan-Yu CHEN, Hsien-Hsin LIN
  • Patent number: 11482620
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Publication number: 20220319934
    Abstract: A semiconductor device includes a first device region and a second device region. The first device region includes a first source/drain region extending from a substrate and a first and a second pair of spacers. The first source/drain region extends between the first pair of spacers and the second pair of spacers. The first pair of spacers and the second pair of spacers have a first height. The second device region includes a second and a third source/drain region extending from the substrate and a third and a fourth pair of spacers. The third source/drain region is separate from the second source/drain region. The second source/drain region extends between the third pair of spacers. The third source/drain region extends between the fourth pair of spacers. The third pair of spacers and the fourth pair of spacers have a second height greater than the first height.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Li-Li Su, Yee-Chia Yeo
  • Publication number: 20220302282
    Abstract: A method includes forming a fin over a substrate, forming an isolation region adjacent the fin, forming a dummy gate structure over the fin, and recessing the fin adjacent the dummy gate structure to form a first recess using a first etching process. The method also includes performing a plasma clean process on the first recess, the plasma clean process including placing the substrate on a holder disposed in a process chamber, heating the holder to a process temperature between 300° C. and 1000° C., introducing hydrogen gas into a plasma generation chamber connected to the process chamber, igniting a plasma within the plasma generation chamber to form hydrogen radicals, and exposing surfaces of the recess to the hydrogen radicals. The method also includes epitaxially growing a source/drain region in the first recess.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Chien-Wei Lee, Che-Yu Lin, Hsueh-Chang Sung, Yee-Chia Yeo
  • Publication number: 20220293473
    Abstract: A method includes forming a gate structure over fins protruding from a semiconductor substrate; forming an isolation region surrounding the fins; depositing a spacer layer over the gate structure and over the fins, wherein the spacer layer fills the regions extending between pairs of adjacent fins; performing a first etch on the spacer layer, wherein after performing the first etch, first remaining portions of the spacer layer that are within inner regions extending between pairs of adjacent fins have a first thickness and second remaining portions of the spacer layer that are not within the inner regions have a second thickness less than the first thickness; and forming an epitaxial source/drain region adjacent the gate structure and extending over the fins, wherein portions of the epitaxial source/drain region within the inner regions are separated from the first remaining portions of the spacer layer.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Yee-Chia Yeo
  • Patent number: 11437515
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 11411098
    Abstract: A device includes a substrate and a gate structure over the substrate. The device further includes source/drain (S/D) features in the substrate. At least one of the S/D features is located in a trench. The at least one S/D feature includes a first semiconductor material covering an entirety of a bottom surface of the trench. The at least one S/D feature further includes a second semiconductor material over the first semiconductor material. The at least one S/D feature further includes a third semiconductor material over the second semiconductor material. The second semiconductor material has a composition different from the first semiconductor material and the third semiconductor material. The first semiconductor material includes physically discontinuous portions directly contacting the substrate. The second semiconductor material surrounds the third semiconductor material.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsz-Mei Kwok, Hsueh-Chang Sung, Kuan-Yu Chen, Hsien-Hsin Lin
  • Patent number: 11411109
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20220223591
    Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. A top portion of the semiconductor fin is formed of a first semiconductor material. A semiconductor cap layer is formed on a top surface and sidewalls of the semiconductor fin. The semiconductor cap layer is formed of a second semiconductor material different from the first semiconductor material. The method further includes forming a gate stack on the semiconductor cap layer, forming a gate spacer on a sidewall of the gate stack, etching a portion of the semiconductor fin on a side of the gate stack to form a first recess extending into the semiconductor fin, recessing the semiconductor cap layer to form a second recess directly underlying a portion of the gate spacer, and performing an epitaxy to grow an epitaxy region extending into both the first recess and the second recess.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Inventors: Yen-Ting Chen, Bo-Yu Lai, Chien-Wei Lee, Hsueh-Chang Sung, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20220190139
    Abstract: A method for forming a semiconductor structure includes forming a gate structure over a substrate. The method also includes forming a spacer on a sidewall of the gate structure. The method also includes forming a source/drain recess beside the spacer. The method also includes treating the source/drain recess and partially removing the spacers in a first cleaning process. The method also includes treating the source/drain recess with a plasma process after performing the first cleaning process. The method also includes treating the source/drain recess in a second cleaning process after treating the source/drain recess with the plasma process. The method also includes forming a source/drain structure in the source/drain recess after performing the second cleaning process.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei LEE, Yen-Ru LEE, Hsueh-Chang SUNG, Yee-Chia YEO
  • Patent number: 11355620
    Abstract: A method includes forming a fin over a substrate, forming an isolation region adjacent the fin, forming a dummy gate structure over the fin, and recessing the fin adjacent the dummy gate structure to form a first recess using a first etching process. The method also includes performing a plasma clean process on the first recess, the plasma clean process including placing the substrate on a holder disposed in a process chamber, heating the holder to a process temperature between 300° C. and 1000° C., introducing hydrogen gas into a plasma generation chamber connected to the process chamber, igniting a plasma within the plasma generation chamber to form hydrogen radicals, and exposing surfaces of the recess to the hydrogen radicals. The method also includes epitaxially growing a source/drain region in the first recess.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: June 7, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei Lee, Che-Yu Lin, Hsueh-Chang Sung, Yee-Chia Yeo
  • Patent number: 11348840
    Abstract: A method includes forming a gate structure over fins protruding from a semiconductor substrate; forming an isolation region surrounding the fins; depositing a spacer layer over the gate structure and over the fins, wherein the spacer layer fills the regions extending between pairs of adjacent fins; performing a first etch on the spacer layer, wherein after performing the first etch, first remaining portions of the spacer layer that are within inner regions extending between pairs of adjacent fins have a first thickness and second remaining portions of the spacer layer that are not within the inner regions have a second thickness less than the first thickness; and forming an epitaxial source/drain region adjacent the gate structure and extending over the fins, wherein portions of the epitaxial source/drain region within the inner regions are separated from the first remaining portions of the spacer layer.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Min Liu, Hsueh-Chang Sung, Yee-Chia Yeo
  • Publication number: 20220130979
    Abstract: A method of forming a semiconductor device includes depositing a film over a dielectric layer. The dielectric layer is over a first fin, a second fin, and within a trench between the first fin and the second fin. The method further includes etching top portions of the film, performing a treatment on the dielectric layer to remove impurities after etching the top portions of the film, and filling the trench over the remaining portions of the film. The treatment includes bombarding the dielectric layer with radicals.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Chia-Ao Chang, De-Wei Yu, Chii-Horng Li, Yee-Chia Yeo, Hsueh-Chang Sung, Pei-Ren Jeng
  • Publication number: 20220123117
    Abstract: Embodiments provide a way of treating source/drain recesses with a high heat treatment and an optional hydrogen plasma treatment. The high heat treatment smooths the surfaces inside the recesses and remove oxides and etching byproducts. The hydrogen plasma treatment enlarges the recesses vertically and horizontally and inhibits further oxidation of the surfaces in the recesses.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 21, 2022
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee
  • Patent number: 11296077
    Abstract: A method includes forming a semiconductor fin protruding higher than top surfaces of isolation regions. A top portion of the semiconductor fin is formed of a first semiconductor material. A semiconductor cap layer is formed on a top surface and sidewalls of the semiconductor fin. The semiconductor cap layer is formed of a second semiconductor material different from the first semiconductor material. The method further includes forming a gate stack on the semiconductor cap layer, forming a gate spacer on a sidewall of the gate stack, etching a portion of the semiconductor fin on a side of the gate stack to form a first recess extending into the semiconductor fin, recessing the semiconductor cap layer to form a second recess directly underlying a portion of the gate spacer, and performing an epitaxy to grow an epitaxy region extending into both the first recess and the second recess.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: April 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ting Chen, Bo-Yu Lai, Chien-Wei Lee, Hsueh-Chang Sung, Wei-Yang Lee, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11271096
    Abstract: A method for forming a fin field effect transistor device structure includes forming a fin structure over a substrate. The method also includes forming a gate structure across the fin structure. The method also includes forming a source/drain recess adjacent to the gate structure. The method also includes wet cleaning the source/drain recess in a first wet cleaning process. The method also includes treating the source/drain recess with a plasma process. The method also includes wet cleaning the source/drain recess in a second wet cleaning process after treating the source/drain recess via the plasma process. The method also includes growing a source/drain epitaxial structure in the source/drain recess.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Wei Lee, Yen-Ru Lee, Hsueh-Chang Sung, Yee-Chia Yeo
  • Publication number: 20220059655
    Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one ore more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
  • Publication number: 20220059676
    Abstract: A fin structure on a substrate is disclosed. The fin structure can comprises a first epitaxial region and a second epitaxial region separated by a dielectric region, a merged epitaxial region on the first epitaxial region and the second epitaxial region, an epitaxial buffer region on a top surface of the merged epitaxial region, and an epitaxial capping region on the buffer epitaxial region and side surfaces of the merged epitaxial region.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 24, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang SUNG, Kun-Mu Li