Patents by Inventor Hsueh-Chang Sung

Hsueh-Chang Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200105875
    Abstract: A semiconductor device, and a method of manufacturing, is provided. A first recess in the semiconductor layer may be disposed between a first dummy gate and a second dummy gate. A first spacer is formed on sidewalls of the first dummy gate and a second spacer is formed on sidewalls of the second dummy gate. The first and second spacers form triangular spacer extensions contacting the bottom surface of the first recess. After forming the first spacer and the second spacer, a second recess is formed in the semiconductor layer disposed between the first dummy gate and the second dummy gate. A source/drain region is epitaxially grown in the second recess.
    Type: Application
    Filed: June 17, 2019
    Publication date: April 2, 2020
    Inventors: Kun-Mu Li, Yen-Ru Lee, Hsueh-Chang Sung
  • Publication number: 20200105932
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region and a source/drain region in the active region adjacent the gate stack. The source/drain region includes a first semiconductor layer having a first germanium concentration and a second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second germanium concentration greater than the first germanium concentration. The source/drain region further includes a third semiconductor layer over the second semiconductor layer and a fourth semiconductor layer over the third semiconductor layer. The third semiconductor layer has a third germanium concentration greater than the second germanium concentration. The fourth semiconductor layer has a fourth germanium concentration less than the third germanium concentration.
    Type: Application
    Filed: July 8, 2019
    Publication date: April 2, 2020
    Inventors: Kun-Mu Li, Hsueh-Chang Sung
  • Publication number: 20200035831
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20200006548
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Publication number: 20190378920
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Patent number: 10483396
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Patent number: 10475926
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20190115470
    Abstract: An integrated circuit structure include a semiconductor substrate, a gate stack over the semiconductor substrate, and a recess extending into the semiconductor substrate, wherein the recess is adjacent to the gate stack. A silicon germanium region is disposed in the recess, wherein the silicon germanium region has a first p-type impurity concentration. A silicon cap substantially free from germanium is overlying the silicon germanium region. The silicon cap has a second p-type impurity concentration greater than the first p-type impurity concentration.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 18, 2019
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20190035931
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 31, 2019
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20190013405
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 10, 2019
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Patent number: 10158016
    Abstract: An integrated circuit structure include a semiconductor substrate, a gate stack over the semiconductor substrate, and a recess extending into the semiconductor substrate, wherein the recess is adjacent to the gate stack. A silicon germanium region is disposed in the recess, wherein the silicon germanium region has a first p-type impurity concentration. A silicon cap substantially free from germanium is overlying the silicon germanium region. The silicon cap has a second p-type impurity concentration greater than the first p-type impurity concentration.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 10084089
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 10062781
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 28, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20180204726
    Abstract: A fin field device structure and method for forming the same are provided. The FinFET device structure includes a protruding structure extending from a substrate and an anti-punch through implant (APT) region formed in the protruding structure. The FinFET device structure includes a barrier layer formed on the APT region, and the barrier layer has a width in a horizontal direction. The width gradually tapers from a bottom of the barrier layer to a top of the barrier layer.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yao WEN, Sheng-Chen WANG, Sai-Hooi YEONG, Hsueh-Chang SUNG, Ya-Yun CHENG
  • Patent number: 10026662
    Abstract: A semiconductor structure includes a device region and a test region. In the device region, first fin spacers cover sidewalls of a first fin structure and have a first height, and a first epitaxy structure is disposed in the first fin structure, which a portion of the first epitaxy structure is above the first fin spacers and having a first width. In the test region, second fin spacers cover sidewalls of the second fin structure and have a second height, and the second height is greater than the first height. A second epitaxy structure is disposed in the second fin structure, and a portion of the second epitaxy structure is above the second fin spacers and having a second width, which the second width is less than the first width.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 17, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Chang Sung, Chih-Chiang Chang, Kun-Mu Li
  • Publication number: 20180190788
    Abstract: A device includes a substrate and a gate structure over the substrate. The device further includes source/drain (S/D) features in the substrate. At least one of the S/D features is located in a trench. The at least one S/D feature includes a first semiconductor material covering an entirety of a bottom surface of the trench. The at least one S/D feature further includes a second semiconductor material over the first semiconductor material. The at least one S/D feature further includes a third semiconductor material over the second semiconductor material. The second semiconductor material has a composition different from the first semiconductor material and the third semiconductor material. The first semiconductor material includes physically discontinuous portions directly contacting the substrate. The second semiconductor material surrounds the third semiconductor material.
    Type: Application
    Filed: March 2, 2018
    Publication date: July 5, 2018
    Inventors: Tsz-Mei KWOK, Hsueh-Chang SUNG, Kuan-Yu CHEN, Hsien-Hsin LIN
  • Patent number: 10014411
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A metal silicide region is over and in contact with the second silicon germanium region.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: July 3, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Kun-Mu Li, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 9991364
    Abstract: A transistor device includes a gate structure disposed over a channel region of a semiconductor substrate. A source/drain recess is arranged in the semiconductor substrate alongside the gate structure. A doped silicon-germanium (SiGe) region is disposed within the source/drain recess and has a doping type which is opposite to that of the channel. An un-doped SiGe region is also disposed within the source/drain recess. The un-doped SiGe region underlies the doped SiGe region and comprises different germanium concentrations at different locations within the source/drain recess.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 5, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsz-Mei Kwok, Hsueh-Chang Sung, Kun-Mu Li, Chii-Horng Li, Tze-Liang Lee
  • Publication number: 20180151698
    Abstract: A method of forming a semiconductor device having first and second fin structures on a substrate includes forming a first epitaxial region of the first fin structure and forming a second epitaxial region of the second fin structure. The method further includes forming a buffer region on the first epitaxial region of the first fin structure and performing an etch process to etch back a portion of the second epitaxial region. The buffer region helps to prevents etch back of a top surface of the first epitaxial region during the etch process. Further, a capping region is formed on the buffer region and the etched second epitaxial region.
    Type: Application
    Filed: April 28, 2017
    Publication date: May 31, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li
  • Patent number: 9953836
    Abstract: A fin field device structure and method for forming the same are provided. The FinFET device structure includes a substrate and a fin structure extending from the substrate. The FinFET device structure also includes an anti-punch through implant (APT) region formed in the fin structure and a barrier layer formed on the APT region. The barrier layer has a middle portion and a peripheral portion, and the middle portion is higher than the peripheral portion. The FinFET device structure further includes an epitaxial layer formed on the barrier layer.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Yao Wen, Sheng-Chen Wang, Sai-Hooi Yeong, Hsueh-Chang Sung, Ya-Yun Cheng