Patents by Inventor Hsun-Ying Huang

Hsun-Ying Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200321294
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first bonding layer formed below a first substrate, a first bonding via formed through the first oxide layer and the first bonding layer, a first dummy pad formed in the first bonding layer. The semiconductor structure includes a second semiconductor device. The second semiconductor device includes a second bonding layer formed over a second substrate, a second bonding via formed through the second bonding layer, and a second dummy pad formed in the second bonding layer. The semiconductor structure includes a bonding structure between the first substrate and the second substrate, wherein the bonding structure includes the first bonding via bonded to the second bonding via and the first dummy pad bonded to the second dummy pad.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu WEI, Cheng-Yuan LI, Yen-Liang LIN, Kuo-Cheng LEE, Hsun-Ying HUANG, Hsin-Chi CHEN
  • Patent number: 10790321
    Abstract: The present disclosure relates to a CMOS image sensor, and an associated method of formation. In some embodiments, the CMOS image sensor comprises a floating diffusion region disposed at one side of a transfer gate within a substrate and a photo detecting column disposed at the other side of the transfer gate opposing to the floating diffusion region within the substrate. The photo detecting column comprises a doped sensing layer with a doping type opposite to that of the substrate. The photo detecting column and the substrate are in contact with each other at a junction interface comprising one or more recessed portions. By forming the junction interface with recessed portions, the junction interface is enlarged compared to a previous p-n junction interface without recessed portions, and thus a full well capacity of the photodiode structure is improved.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Hsin-Chi Chen, Kuo-Cheng Lee, Ping-Hao Lin, Hsun-Ying Huang, Yen-Liang Lin, Yu Ting Kao
  • Patent number: 10790265
    Abstract: A semiconductor device structure is provided. The semiconductor device structure has a first surface and a second surface. A first charged layer is disposed over the second surface. A dielectric layer separates a surface of the first charged layer that is closest to the semiconductor substrate from the second surface of the semiconductor substrate. A second charged layer is over the first charged layer. The first charged layer and the second charged layer are different materials and have a same charge polarity.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Hsun-Ying Huang
  • Patent number: 10790327
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first semiconductor die, and a second semiconductor die bonded on the first semiconductor die. A through-substrate via penetrates through a semiconductor substrate of the second semiconductor die. A passivation layer is disposed between the first semiconductor die and the second semiconductor die, wherein the passivation layer is directly bonded to the semiconductor substrate of the second semiconductor die. A conductive feature passes through the passivation layer, wherein the conductive feature is bonded to the through-substrate via. A barrier layer is disposed between the conductive feature and the passivation layer. The barrier layer covers sidewalls of the conductive feature and separates the surface of the conductive feature from a nearest neighboring surface of the first or second semiconductor die.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsun-Ying Huang
  • Publication number: 20200266225
    Abstract: A method for forming a light sensing device is provided. The method includes forming a light sensing region in a semiconductor substrate and forming a light shielding layer over the semiconductor substrate. The method also includes forming a dielectric layer over the light shielding layer and partially removing the light shielding layer and the dielectric layer to form a light shielding element and a dielectric element. A top width of the light shielding element is greater than a bottom width of the dielectric element. The light shielding element and the dielectric element surround a recess, and the recess is aligned with the light sensing region. The method further includes forming a filter element in the recess.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei CHENG, Yi-Hsing CHU, Yin-Chieh HUANG, Chun-Hao CHOU, Kuo-Cheng LEE, Hsun-Ying HUANG, Hsin-Chi CHEN
  • Publication number: 20200266231
    Abstract: The present disclosure relates to a semiconductor image sensor with improved quantum efficiency. The semiconductor image sensor can include a semiconductor layer having a first surface and a second surface opposite of the first surface. An interconnect structure is disposed on the first surface of the semiconductor layer, and radiation-sensing regions are formed in the semiconductor layer. The radiation-sensing regions are configured to sense radiation that enters the semiconductor layer from the second surface and groove structures are formed on the second surface of the semiconductor layer.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei CHENG, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Shih-Hsun Hsu
  • Publication number: 20200266232
    Abstract: The present disclosure relates to a semiconductor image sensor with improved quantum efficiency. The semiconductor image sensor can include a semiconductor layer having a first surface and a second surface opposite of the first surface. An interconnect structure is disposed on the first surface of the semiconductor layer, and radiation-sensing regions are formed in the semiconductor layer. The radiation-sensing regions are configured to sense radiation that enters the semiconductor layer from the second surface and groove structures are formed on the second surface of the semiconductor layer.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Shih-Hsun Hsu
  • Publication number: 20200258931
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first semiconductor die, and a second semiconductor die bonded on the first semiconductor die. A through-substrate via penetrates through a semiconductor substrate of the second semiconductor die. A passivation layer is disposed between the first semiconductor die and the second semiconductor die, wherein the passivation layer is directly bonded to the semiconductor substrate of the second semiconductor die. A conductive feature passes through the passivation layer, wherein the conductive feature is bonded to the through-substrate via. A barrier layer is disposed between the conductive feature and the passivation layer. The barrier layer covers sidewalls of the conductive feature and separates the surface of the conductive feature from a nearest neighboring surface of the first or second semiconductor die.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsun-Ying Huang
  • Patent number: 10714523
    Abstract: An optical isolation structure and a method for fabricating the same are provided. The optical isolation structure includes a first dielectric layer, a second dielectric layer, a third dielectric layer and a dielectric post. The first dielectric layer includes a trench portion located in a trench of the semiconductor substrate. The second dielectric layer includes a trench portion covering the trench portion of the first dielectric layer and located in the trench of the semiconductor substrate. The third dielectric layer includes a trench portion covering the trench portion of the second dielectric layer and located in the trench of the semiconductor substrate. The dielectric post is disposed in the trench of the semiconductor substrate and covering the trench portion of the third dielectric layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Chun-Wei Chia, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang
  • Publication number: 20200212244
    Abstract: A photodetector includes: a substrate; a first semiconductor region, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Chia-Yu WEI, Yu-Ting KAO, Yen-Liang LIN, Wen-I HSU, Hsun-Ying HUANG, Kuo-Cheng LEE, Hsin-Chi CHEN
  • Patent number: 10692826
    Abstract: A semiconductor structure is provided. A first semiconductor device includes a first conductive layer formed over a first substrate; a first etching stop layer formed over the first conductive layer, and the first etching stop layer is in direct contact with the first conductive layer. A first bonding layer is formed over the first etching stop layer, and a first bonding via is formed through the first bonding layer and the first etching stop layer. The semiconductor structure includes a second semiconductor device. The second semiconductor device includes a second bonding layer formed over the second etching stop layer and a second bonding via formed through the second bonding layer and a second etching stop layer. A bonding structure between the first substrate and the second substrate, and the bonding structure includes the first bonding via bonded to the second bonding via.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yu Wei, Cheng-Yuan Li, Yen-Liang Lin, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Publication number: 20200185440
    Abstract: A gate structure includes a gate and a first isolation structure having a top surface and a bottom surface. The gate includes a first sidewall adjacent to the first isolation structure, a second sidewall, a first horizontal surface adjacent to a bottom edge of the first sidewall and a bottom edge of the second sidewall, the first horizontal surface being between the top surface of the first isolation structure and the bottom surface of the first isolation structure. The gate also includes a second horizontal surface adjacent to a top edge of the second sidewall. An effective channel width defined by the gate structure includes a height of the second sidewall and a width of the second horizontal surface.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Chia-Yu WEI, Fu-Cheng CHANG, Hsin-Chi CHEN, Ching-Hung KAO, Chia-Pin CHENG, Kuo-Cheng LEE, Hsun-Ying HUANG, Yen-Liang LIN
  • Patent number: 10680027
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first semiconductor die, and a second semiconductor die bonded on the first semiconductor die. A through-substrate via penetrates through a semiconductor substrate of the second semiconductor die. A passivation layer is disposed between the first semiconductor die and the second semiconductor die, wherein the passivation layer is directly bonded to the semiconductor substrate of the second semiconductor die. A conductive feature passes through the passivation layer, wherein the conductive feature is bonded to the through-substrate via. A barrier layer is disposed between the conductive feature and the passivation layer. The barrier layer covers sidewalls of the conductive feature and separates the surface of the conductive feature from a nearest neighboring surface of the first or second semiconductor die.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 9, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsun-Ying Huang
  • Publication number: 20200161244
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first plurality of interconnect layers within a first inter-level dielectric (ILD) structure disposed along a front-side of a first substrate. A conductive pad is arranged along a back-side of the first substrate and a first through-substrate-via (TSV) extends between an interconnect wire of the first plurality of interconnect layers and the conductive pad. A second plurality of interconnect layers are within a second ILD structure disposed along a front-side of a second substrate that is bonded to the first substrate. A second through substrate via (TSV) extends through the second substrate. The second TSV has a greater width than the first TSV.
    Type: Application
    Filed: December 11, 2019
    Publication date: May 21, 2020
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsun-Ying Huang
  • Publication number: 20200152687
    Abstract: The present disclosure relates to an image sensor with a pad structure formed during a front-end-of-line process. The pad structure can be formed prior to formation of back side deep trench isolation structures and metal grid structures. An opening is formed on a back side of the image sensor device to expose the embedded pad structure and to form electrical connections.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei CHENG, Chun-Hao CHOU, Kuo-Cheng LEE, Hsun-Ying HUANG, Yin-Chieh HUANG
  • Patent number: 10651217
    Abstract: Structures and formation methods of a light sensing device are provided. The light sensing device includes a semiconductor substrate and a filter element over the semiconductor substrate. The light sensing device also includes a light sensing region below the filter element and a light shielding element over the semiconductor substrate and surrounding a lower portion of the filter element. The light sensing device further includes a dielectric element over the light shielding element and surrounding an upper portion of the filter element. A top width of the light shielding element and a bottom width of the dielectric element are different from each other.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 12, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Yi-Hsing Chu, Yin-Chieh Huang, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Patent number: 10644060
    Abstract: The present disclosure relates to a semiconductor image sensor with improved quantum efficiency. The semiconductor image sensor can include a semiconductor layer having a first surface and a second surface opposite of the first surface. An interconnect structure is disposed on the first surface of the semiconductor layer, and radiation-sensing regions are formed in the semiconductor layer. The radiation-sensing regions are configured to sense radiation that enters the semiconductor layer from the second surface and groove structures are formed on the second surface of the semiconductor layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Shih-Hsun Hsu
  • Publication number: 20200135787
    Abstract: A method for forming a light-sensing device is provided. The method includes forming a light-sensing region in a semiconductor substrate. The semiconductor substrate has a front surface and a light-receiving surface opposite to the front surface. The method also includes forming a first dielectric layer over the front surface and forming a second dielectric layer over the first dielectric layer. The second dielectric layer has a different refractive index than that of the first dielectric layer, and the first dielectric layer and the second dielectric layer together form a (or a part of a) light-reflective element. The method further includes partially removing the first dielectric layer and the second dielectric layer to form a contact opening. In addition, the method includes forming a conductive contact to partially (or completely) fill the contact opening.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei CHENG, Chun-Hao CHOU, Kuo-Cheng LEE, Hsun-Ying HUANG
  • Patent number: 10629765
    Abstract: A photodetector includes: a substrate having a first doping type; a first semiconductor region having a second doping type, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region having the first doping type, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Yu-Ting Kao, Yen-Liang Lin, Wen-I Hsu, Hsun-Ying Huang, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20200106950
    Abstract: An image sensor including a semiconductor substrate, a plurality of color filters, a plurality of first lenses and a second lens is provided. The semiconductor substrate includes a plurality of sensing pixels arranged in array, and each of the plurality of sensing pixels respectively includes a plurality of image sensing units and a plurality of phase detection units. The color filters at least cover the plurality of image sensing units. The first lenses are disposed on the plurality of color filters. Each of the plurality of first lenses respectively covers one of the plurality of image sensing units. The second lens is disposed on the plurality of color filters and the second lens covers the plurality of phase detection units.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang