Patents by Inventor Hu Kang

Hu Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160052651
    Abstract: Methods and apparatus for use of a fill on demand ampoule are disclosed. The fill on demand ampoule may refill an ampoule with precursor concurrent with the performance of other deposition processes. The fill on demand may keep the level of precursor within the ampoule at a relatively constant level. The level may be calculated to result in an optimum head volume. The fill on demand may also keep the precursor at a temperature near that of an optimum precursor temperature. The fill on demand may occur during parts of the deposition process where the agitation of the precursor due to the filling of the ampoule with the precursor minimally effects the substrate deposition. Substrate throughput may be increased through the use of fill on demand.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 25, 2016
    Inventors: Tuan Nguyen, Eashwar Ranganathan, Shankar Swaminathan, Adrien LaVoie, Chloe Baldasseroni, Frank L. Pasquale, Purushottam Kumar, Jun Qian, Hu Kang
  • Publication number: 20160056032
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates. The methods may include flowing a film precursor into a processing chamber through a showerhead substantially maintained at a first temperature, and adsorbing the film precursor onto a substrate held on a substrate holder such that the precursor forms an adsorption-limited layer while the substrate holder is substantially maintained at a second temperature. The first temperature may be at least about 10° C. above the second temperature, or the first temperature may be at or below the second temperature. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed film precursor, and thereafter reacting adsorbed film precursor to form a film layer. Also disclosed herein are apparatuses having a processing chamber, a substrate holder, a showerhead, and one or more controllers for operating the apparatus to employ the foregoing film deposition techniques.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Chloe Baldasseroni, Adrien LaVoie, Hu Kang, Jun Qian, Purushottam Kumar, Andrew Duvall, Cody Barnett, Mohamed Sabri, Ramesh Chandrasekharan, Karl F. Leeser, David C. Smith, Seshasayee Varadarajan, Edmund B. Minshall
  • Patent number: 9257274
    Abstract: Provided herein are methods and apparatus for filling one or more gaps on a semiconductor substrate. The disclosed embodiments are especially useful for forming seam-free, void-free fill in both narrow and wide features. The methods may be performed without any intervening etching operations to achieve a single step deposition. In various implementations, a first operation is performed using a novel PEALD fill mechanism to fill narrow gaps and line wide gaps. A second operation may be performed using PECVD methods to continue filling the wide gaps.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 9, 2016
    Assignee: Lam Research Corporation
    Inventors: Hu Kang, Shankar Swaminathan, Jun Qian, Wanki Kim, Dennis Hausmann, Bart J. van Schravendijk, Adrien LaVoie
  • Publication number: 20160035566
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates employing the use of a secondary purge. The methods may include flowing a film precursor into a processing chamber and adsorbing the film precursor onto a substrate in the processing chamber such that the precursor forms an adsorption-limited layer on the substrate. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed precursor by purging the processing chamber with a primary purge gas, and thereafter reacting adsorbed film precursor while a secondary purge gas is flowed into the processing chamber, resulting in the formation of a film layer on the substrate. The secondary purge gas may include a chemical species having an ionization energy and/or a disassociation energy equal to or greater than that of O2. Also disclosed are apparatuses which implement the foregoing processes.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 4, 2016
    Inventors: Adrien LaVoie, Hu Kang, Purushottam Kumar, Shankar Swaminathan, Jun Qian, Frank Pasquale, Chloe Baldasseroni
  • Publication number: 20160032453
    Abstract: A vapor delivery system includes an ampoule to store liquid precursor and a heater to partially vaporize the liquid precursor. A first valve communicates with a push gas source and the ampoule. A second valve supplies vaporized precursor to a heated injection manifold. A valve manifold includes a first node in fluid communication with an outlet of the heated injection manifold, a third valve having an inlet in fluid communication with the first node and an outlet in fluid communication with vacuum, a fourth valve having an inlet in fluid communication with the first node and an outlet in fluid communication with a second node, a fifth valve having an outlet in fluid communication with the second node, and a sixth valve having an outlet in fluid communication with the second node. A gas distribution device is in fluid communication with the second node.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 4, 2016
    Inventors: Jun Qian, Hu Kang, Purushottam Kumar, Chloe Baldasseroni, Heather Landis, Andrew Kenichi Duvall, Mohamed Sabri, Ramesh Chandrasekharan, Karl Leeser, Shankar Swaminathan, David Smith, Jeremiah Baldwin, Eashwar Ranganathan, Adrien LaVoie, Frank Pasquale, Jeongseok Ha, lngi Bae
  • Publication number: 20160020092
    Abstract: The embodiments herein focus on plasma enhanced atomic layer deposition (PEALD) processes. Conventional PEALD techniques result in films having high quality at the bottom and top of a feature, but low quality on the sidewalls. The disclosed embodiments achieve more uniform film quality as evidenced by more uniform wet etch rates and electrical properties throughout the film. The disclosed embodiments may use one or more of a relatively high deposition temperature, a relatively high RF power for generating the plasma, and/or relatively long RF plasma exposure duration during each cycle of the PEALD reaction.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Hu Kang, Wanki Kim, Adrien LaVoie
  • Patent number: 9230800
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by the following operations: (a) exposing the substrate surface to a first reactant in vapor phase under conditions allowing the first reactant to adsorb onto the substrate surface; (b) exposing the substrate surface to a second reactant in vapor phase while the first reactant is adsorbed on the substrate surface; and (c) exposing the substrate surface to plasma to drive a reaction between the first and second reactants adsorbed on the substrate surface to form the film.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 5, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Adrien LaVoie, Shankar Swaminathan, Hu Kang, Ramesh Chandrasekharan, Tom Dorsh, Dennis M. Hausmann, Jon Henri, Thomas Jewell, Ming Li, Bryan Schlief, Antonio Xavier, Thomas W. Mountsier, Bart J. van Schravendijk, Easwar Srinivasan, Mandyam Sriram
  • Publication number: 20150368797
    Abstract: A method for processing a substrate in a substrate processing system includes flowing reactant gases into a process chamber including a substrate, supplying a first power level sufficient to promote rearrangement of molecules on a surface of the substrate, waiting a first predetermined period, and, after the first predetermined period, performing plasma-enhanced, pulsed chemical vapor deposition of film on the substrate by supplying one or more precursors while supplying a second power level for a second predetermined period. The second power level is greater than the first power level. The method further includes removing reactants from the process chamber.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 24, 2015
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Publication number: 20150354059
    Abstract: Systems and methods for operating a substrate processing system include processing a substrate arranged on a substrate support in a processing chamber. At least one of precursor gas and/or reactive gas is supplied during the processing. The substrate is removed from the processing chamber. Carrier gas and purge gas are selectively supplied to the processing chamber. RF plasma is generated in the processing chamber during N cycles, where N is an integer greater than one. The RF plasma is on for a first period and off for a second period during each of the N cycles. The purge gas is supplied during at least part of each of the N cycles.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Inventors: Hu Kang, Adrien LaVoie
  • Publication number: 20150332912
    Abstract: Disclosed are methods of depositing films of material on multiple semiconductor substrates in a multi-station processing chamber. The methods may include loading a first set of one or more substrates into the processing chamber at a first set of one or more process stations and depositing film material onto the first set of substrates by performing N cycles of film deposition. Thereafter, the methods may further include transferring the first set of substrates from the first set of process stations to a second set of one or more process stations, loading a second set of one or more substrates at the first set of process stations, and depositing film material onto the first and second sets of substrates by performing N? cycles of film deposition, wherein N? is not equal to N. Also disclosed are apparatuses and computer-readable media which may be used to perform similar operations.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 19, 2015
    Inventors: Romuald Nowak, Hu Kang, Adrien LaVoie, Jun Qian
  • Publication number: 20150315706
    Abstract: A low volume showerhead in a semiconductor processing apparatus can include a porous baffle to improve the flow uniformity and purge time during atomic layer deposition. The showerhead can include a plenum volume, one or more gas inlets in fluid communication with the plenum volume, a faceplate including a plurality of first through-holes for distributing gas onto a substrate in the semiconductor processing apparatus, and a porous baffle positioned in a region between the plenum volume and the one or more gas inlets. The one or more gas inlets can include a stem having a small volume to improve purge time. The baffle can be porous and positioned between the stem and the plenum volume to improve flow uniformity and avoid jetting.
    Type: Application
    Filed: March 25, 2015
    Publication date: November 5, 2015
    Inventors: Ramesh Chandrasekharan, Saangrut Sangplung, Shankar Swaminathan, Frank L. Pasquale, Hu Kang, Adrien LaVoie
  • Patent number: 9145607
    Abstract: A method includes flowing reactant gases into a process chamber. Plasma having a first power level is supplied using a plasma source. The process chamber is dosed with the precursor. The first power level is sufficient to enhance adsorption of the precursor on a surface of the substrate and is insufficient to decompose the precursor that is adsorbed. After a first predetermined period, the method includes removing a portion of the precursor that does not adsorb onto the substrate. The precursor that is adsorbed is activated using plasma having a second power level using the plasma source. The second power level is greater than the first power level and is sufficient to decompose the precursor.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: September 29, 2015
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Publication number: 20150247238
    Abstract: Methods of reducing particles in semiconductor substrate processing are provided herein. Methods involve performing a precursor-free radio frequency cycle purge without a substrate in the process chamber by introducing a gas without a precursor into the process chamber through the showerhead and igniting a plasma one or more times after a film is deposited on the substrate by introducing a vaporized liquid precursor to the process chamber.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 3, 2015
    Applicant: Lam Research Corporation
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Hu Kang, Adrien LaVoie
  • Publication number: 20150243545
    Abstract: Systems and methods for depositing film in a substrate processing system includes performing a first atomic layer deposition (ALD) cycle in a processing chamber to deposit film on a substrate including a feature; after the first ALD cycle, exposing the substrate to an inhibitor plasma in the processing chamber for a predetermined period to create a varying passivated surface in the feature; and after the predetermined period, performing a second ALD cycle in the processing chamber to deposit film on the substrate.
    Type: Application
    Filed: February 25, 2015
    Publication date: August 27, 2015
    Inventors: Wei Tang, Bart Van Schravendijk, Jun Qian, Hu Kang, Adrien LaVoie, Deenesh Padhi, David C. Smith
  • Publication number: 20150147482
    Abstract: Methods and apparatus disclosed herein relate to the formation and use of undercoats on the interior surfaces of reaction chambers used to deposit films on substrates. The undercoats are deposited through atomic layer deposition methods. The disclosed undercoats help prevent metal contamination, provide improved resistance to flaking, and are relatively thin. Because of the superior resistance to flaking, the disclosed undercoats allow more substrates to be processed between subsequent cleaning operations, thereby increasing throughput.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Lam Research Corporation
    Inventors: Hu Kang, Jun Qian, Adrien LaVoie
  • Publication number: 20150107513
    Abstract: A system for processing a substrate include a processing chamber including a pedestal to support a substrate and a controller configured to a) supply precursor to the processing chamber; b) purge the processing chamber; c) perform radio frequency (RF) plasma activation; d) purge the processing chamber; and e) prior to purging the processing chamber in at least one of (b) or (d), set a vacuum pressure of the processing chamber to a first predetermined pressure that is less than a vacuum pressure during at least one of (a) or (c) for a first predetermined period.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Shankar Swaminathan, Hu Kang, Adrien LaVoie
  • Publication number: 20150110968
    Abstract: A method includes flowing reactant gases into a process chamber. Plasma having a first power level is supplied using a plasma source. The process chamber is dosed with the precursor. The first power level is sufficient to enhance adsorption of the precursor on a surface of the substrate and is insufficient to decompose the precursor that is adsorbed. After a first predetermined period, the method includes removing a portion of the precursor that does not adsorb onto the substrate. The precursor that is adsorbed is activated using plasma having a second power level using the plasma source. The second power level is greater than the first power level and is sufficient to decompose the precursor.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: Lam Research Corporation
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Patent number: 8956704
    Abstract: Methods for processing a substrate include a) arranging a substrate on a pedestal in a processing chamber; b) supplying precursor to the processing chamber; c) purging the processing chamber; d) performing radio frequency (RF) plasma activation; e) purging the processing chamber; and f) prior to purging the processing chamber in at least one of (c) or (e), setting a vacuum pressure of the processing chamber to a first predetermined pressure that is less than a vacuum pressure during at least one of (b) or (d) for a first predetermined period.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: February 17, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Hu Kang, Adrien LaVoie
  • Publication number: 20140209562
    Abstract: Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by the following operations: (a) exposing the substrate surface to a first reactant in vapor phase under conditions allowing the first reactant to adsorb onto the substrate surface; (b) exposing the substrate surface to a second reactant in vapor phase while the first reactant is adsorbed on the substrate surface; and (c) exposing the substrate surface to plasma to drive a reaction between the first and second reactants adsorbed on the substrate surface to form the film.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Adrien LaVoie, Shankar Swaminathan, Hu Kang, Ramesh Chandrasekharan, Tom Dorsh, Dennis M. Hausmann, Jon Henri, Thomas Jewell, Ming Li, Bryan Schlief, Antonio Xavier, Thomas W. Mountsier, Bart J. van Schravendijk, Easwar Srinivasan, Mandyam Sriram
  • Publication number: 20140141542
    Abstract: Methods and apparatus to form films on sensitive substrates while preventing damage to the sensitive substrate are provided herein. In certain embodiments, methods involve forming a bilayer film on a sensitive substrate that both protects the underlying substrate from damage and possesses desired electrical properties. Also provided are methods and apparatus for evaluating and optimizing the films, including methods to evaluate the amount of substrate damage resulting from a particular deposition process and methods to determine the minimum thickness of a protective layer. The methods and apparatus described herein may be used to deposit films on a variety of sensitive materials such as silicon, cobalt, germanium-antimony-tellerium, silicon-germanium, silicon nitride, silicon carbide, tungsten, titanium, tantalum, chromium, nickel, palladium, ruthenium, or silicon oxide.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 22, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Hu Kang, Shankar Swaminathan, Adrien LaVoie, Jon Henri