Patents by Inventor Huai-Tei Yang
Huai-Tei Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10923355Abstract: A semiconductor structure includes a substrate, a source/drain (S/D) junction, and an S/D contact. The S/D junction is associated with the substrate and includes a trench-defining wall, a semiconductor layer, and a semiconductor material. The trench-defining wall defines a trench. The semiconductor layer is formed over the trench-defining wall, partially fills the trench, substantially covers the trench-defining wall, and includes germanium. The semiconductor material is formed over the semiconductor layer and includes germanium, a percentage composition of which is greater than a percentage composition of the germanium of the semiconductor layer. The S/D contact is formed over the S/D junction.Type: GrantFiled: December 24, 2019Date of Patent: February 16, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTDInventors: Chun-Hsiung Tsai, Huai-Tei Yang, Kuo-Feng Yu, Kei-Wei Chen
-
Patent number: 10879124Abstract: The present disclosure describes an exemplary fabrication method of a p-type fully strained channel that can suppress the formation of {111} facets during a silicon germanium epitaxial growth. The exemplary method includes the formation of silicon epitaxial layer on a top, carbon-doped region of an n-type region. A recess is formed in the silicon epitaxial layer via etching, where the recess exposes the top, carbon-doped region of the n-type region. A silicon seed layer is grown in the recess, and a silicon germanium layer is subsequently epitaxially grown on the silicon seed layer to fill the recess. The silicon seed layer can suppress the formation of growth defects such as, for example, {111} facets, during the silicon germanium epitaxial layer growth.Type: GrantFiled: November 21, 2017Date of Patent: December 29, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun-Chieh Wang, Huai-Tei Yang, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
-
Patent number: 10872769Abstract: The present disclosure relates to a semiconductor device and a manufacturing method of fabricating a semiconductor structure. The method includes forming an opening in a substrate and depositing a conformal metal layer in the opening. The depositing includes performing one or more deposition cycles. The deposition includes flowing a first precursor into a deposition chamber and purging the deposition chamber to remove at least a portion of the first precursor. The method also includes flowing a second precursor into the deposition chamber to form a sublayer of the conformal metal layer and purging the deposition chamber to remove at least a portion of the second precursor. The method further includes performing a metallic halide etching (MHE) process that includes flowing a third precursor into the deposition chamber.Type: GrantFiled: December 30, 2019Date of Patent: December 22, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Yu Lin, Chi-Yu Chou, Hsien-Ming Lee, Huai-Tei Yang, Chun-Chieh Wang, Yueh-Ching Pai, Chi-Jen Yang, Tsung-Ta Tang, Yi-Ting Wang
-
Patent number: 10867799Abstract: A FinFET device and method of forming the same are disclosed. The method includes forming a gate dielectric layer and depositing a metal oxide layer over the gate dielectric layer. The method also includes annealing the gate dielectric layer and the metal oxide layer, causing ions to diffuse from the metal oxide layer to the gate dielectric layer to form a doped gate dielectric layer. The method also includes forming a work function layer over the doped gate dielectric layer, and forming a gate electrode over the work function layer.Type: GrantFiled: December 3, 2019Date of Patent: December 15, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun Chieh Wang, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang, Shahaji B. More
-
Publication number: 20200381529Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.Type: ApplicationFiled: August 17, 2020Publication date: December 3, 2020Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
-
Patent number: 10840358Abstract: Semiconductor structures and method for forming the same are provide. The method includes forming a gate structure over a substrate and forming a recess in the substrate adjacent to the gate structure. The method further includes forming a doped region at a sidewall and a bottom surface of the recess and partially removing the doped region to modify a shape of the recess. The method further includes forming a source/drain structure over a remaining portion of the doped region.Type: GrantFiled: April 25, 2018Date of Patent: November 17, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang
-
Publication number: 20200303378Abstract: A semiconductor device including a cap layer and a method for forming the same are disclosed. In an embodiment, a method includes epitaxially growing a first semiconductor layer over an N-well; etching the first semiconductor layer to form a first recess; epitaxially growing a second semiconductor layer filling the first recess; etching the second semiconductor layer, the first semiconductor layer, and the N-well to form a first fin; forming a shallow trench isolation region adjacent the first fin; and forming a cap layer over the first fin, the cap layer contacting the second semiconductor layer, forming the cap layer including performing a pre-clean process to remove a native oxide from exposed surfaces of the second semiconductor layer; performing a sublimation process to produce a first precursor; and performing a deposition process wherein material from the first precursor is deposited on the second semiconductor layer to form the cap layer.Type: ApplicationFiled: June 8, 2020Publication date: September 24, 2020Inventors: Chun-Chieh Wang, Yueh-Ching Pai, Huai-Tei Yang
-
Publication number: 20200303548Abstract: The present disclosure describes a method to form silicon germanium (SiGe) source/drain epitaxial stacks with a boron doping profile and a germanium concentration that can induce external stress to a fully strained SiGe channel. The method includes forming one or more gate structures over a fin, where the fin includes a fin height, a first sidewall, and a second sidewall opposite to the first sidewall. The method also includes forming a first spacer on the first sidewall of the fin and a second spacer on the second sidewall of the fin; etching the fin to reduce the fin height between the one or more gate structures; and etching the first spacer and the second spacer between the one or more gate structures so that the etched first spacer is shorter than the etched second spacer and the first and second etched spacers are shorter than the etched fin. The method further includes forming an epitaxial stack on the etched fin between the one or more gate structures.Type: ApplicationFiled: June 8, 2020Publication date: September 24, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Cheng-Han Lee
-
Publication number: 20200279949Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.Type: ApplicationFiled: May 19, 2020Publication date: September 3, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun-Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
-
Patent number: 10749008Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.Type: GrantFiled: July 31, 2018Date of Patent: August 18, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
-
Publication number: 20200251574Abstract: An embodiment is a method of semiconductor processing. The method includes depositing a high-k gate dielectric layer over a semiconductor fin. A barrier layer is deposited over the high-k gate dielectric layer. A silicon passivation layer is deposited over the barrier layer. A nitrogen treatment is performed on the silicon passivation layer. A capping layer is deposited over the silicon passivation layer. The capping layer is annealed.Type: ApplicationFiled: April 20, 2020Publication date: August 6, 2020Inventors: Chien-Shun Liao, Huai-Tei Yang, Chun-Chieh Wang, Yueh-Ching Pai, Chun-I Wu
-
Publication number: 20200238473Abstract: A method of using a polishing system includes securing a wafer in a carrier head, the carrier head including a housing enclosing the wafer, in which the housing includes a retainer ring recess and a retainer ring positioned in the retainer ring recess, the retainer ring surrounding the wafer, in which the retainer ring includes a main body portion and a bottom portion connected to the main body portion, and a bottom surface of the bottom portion includes at least one first engraved region and a first non-engraved region adjacent to the first engraved region; pressing the wafer against a polishing pad; and moving the carrier head or the polishing pad relative to the other.Type: ApplicationFiled: January 28, 2019Publication date: July 30, 2020Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Yuan YANG, Huai-Tei YANG, Yu-Chen WEI, Szu-Cheng WANG, Li-Hsiang CHAO, Jen-Chieh LAI, Shih-Ho LIN
-
Publication number: 20200236768Abstract: An extreme ultra-violet (EUV) lithography system includes an EUV source and EUV scanner. A droplet generator provides a droplet stream in the EUV source. A gas shield is configured to surround the droplet stream. When a laser reacts a droplet in the stream EUV radiation and ionized particles are produced. The gas shield can reduce contamination resulting from the ionized particles by conveying the ionized particles to a droplet catcher. Components of the EUV source may be biased with a voltage to repel or attract ionized particles to reduce contamination from the ionized particles.Type: ApplicationFiled: April 3, 2020Publication date: July 23, 2020Inventors: Ming-Fa Wu, Tzung-Chi Fu, Chun Che Lin, Po-Chung Cheng, Huai-Tei Yang
-
Patent number: 10680106Abstract: The present disclosure describes a method to form silicon germanium (SiGe) source/drain epitaxial stacks with a boron doping profile and a germanium concentration that can induce external stress to a fully strained SiGe channel. The method includes forming one or more gate structures over a fin, where the fin includes a fin height, a first sidewall, and a second sidewall opposite to the first sidewall. The method also includes forming a first spacer on the first sidewall of the fin and a second spacer on the second sidewall of the fin; etching the fin to reduce the fin height between the one or more gate structures; and etching the first spacer and the second spacer between the one or more gate structures so that the etched first spacer is shorter than the etched second spacer and the first and second etched spacers are shorter than the etched fin. The method further includes forming an epitaxial stack on the etched fin between the one or more gate structures.Type: GrantFiled: June 4, 2018Date of Patent: June 9, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Cheng-Han Lee
-
Patent number: 10679995Abstract: A semiconductor device including a cap layer and a method for forming the same are disclosed. In an embodiment, a method includes epitaxially growing a first semiconductor layer over an N-well; etching the first semiconductor layer to form a first recess; epitaxially growing a second semiconductor layer filling the first recess; etching the second semiconductor layer, the first semiconductor layer, and the N-well to form a first fin; forming a shallow trench isolation region adjacent the first fin; and forming a cap layer over the first fin, the cap layer contacting the second semiconductor layer, forming the cap layer including performing a pre-clean process to remove a native oxide from exposed surfaces of the second semiconductor layer; performing a sublimation process to produce a first precursor; and performing a deposition process wherein material from the first precursor is deposited on the second semiconductor layer to form the cap layer.Type: GrantFiled: February 14, 2019Date of Patent: June 9, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Chieh Wang, Yueh-Ching Pai, Huai-Tei Yang
-
Patent number: 10665717Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.Type: GrantFiled: August 26, 2018Date of Patent: May 26, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
-
Publication number: 20200152742Abstract: The present disclosure describes an exemplary method to form p-type fully strained channel (PFSC) or an n-type fully strained channel (NFSC) that can mitigate epitaxial growth defects or structural deformations in the channel region due to processing. The exemplary method can include (i) two or more surface pre-clean treatment cycles with nitrogen trifluoride (NF3) and ammonia (NH3) plasma, followed by a thermal treatment; (ii) a prebake (anneal); and (iii) a silicon germanium epitaxial growth with a silicon seed layer, a silicon germanium seed layer, or a combination thereof.Type: ApplicationFiled: January 13, 2020Publication date: May 14, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shahaji B. More, Huai-Tei YANG, Zheng-Yang PAN, Shih-Chieh CHANG, Chun-Chieh WANG, Cheng-Han Lee
-
Publication number: 20200135476Abstract: A finFET device and methods of forming are provided. The method includes etching recesses in a substrate on opposite sides of a gate stack. The method also includes epitaxially growing a source/drain region in each recess, where each of the source/drain regions includes a capping layer along a top surface of the respective source/drain region, and where a concentration of a first material in each source/drain region is highest at an interface of the capping layer and an underlying epitaxy layer. The method also includes depositing a plurality of metal layers overlying and contacting each of the source/drain regions. The method also includes performing an anneal, where after the anneal a metal silicide region is formed in each of the source/drain regions, where each metal silicide region extends through the capping layer and terminates at the interface of the capping layer and the underlying epitaxy layer.Type: ApplicationFiled: December 27, 2019Publication date: April 30, 2020Inventors: Yi-Min Huang, Huai-Tei Yang, Shih-Chieh Chang
-
Publication number: 20200135468Abstract: A semiconductor structure includes a substrate, a source/drain (S/D) junction, and an S/D contact. The S/D junction is associated with the substrate and includes a trench-defining wall, a semiconductor layer, and a semiconductor material. The trench-defining wall defines a trench. The semiconductor layer is formed over the trench-defining wall, partially fills the trench, substantially covers the trench-defining wall, and includes germanium. The semiconductor material is formed over the semiconductor layer and includes germanium, a percentage composition of which is greater than a percentage composition of the germanium of the semiconductor layer. The S/D contact is formed over the S/D junction.Type: ApplicationFiled: December 24, 2019Publication date: April 30, 2020Inventors: Chun-Hsiung Tsai, Huai-Tei Yang, Kuo-Feng Yu, Kei-Wei Chen
-
Publication number: 20200135471Abstract: The present disclosure relates to a semiconductor device and a manufacturing method of fabricating a semiconductor structure. The method includes forming an opening in a substrate and depositing a conformal metal layer in the opening. The depositing includes performing one or more deposition cycles. The deposition includes flowing a first precursor into a deposition chamber and purging the deposition chamber to remove at least a portion of the first precursor. The method also includes flowing a second precursor into the deposition chamber to form a sublayer of the conformal metal layer and purging the deposition chamber to remove at least a portion of the second precursor. The method further includes performing a metallic halide etching (MHE) process that includes flowing a third precursor into the deposition chamber.Type: ApplicationFiled: December 30, 2019Publication date: April 30, 2020Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Yu LIN, Chi-Yu CHOU, Hsien-Ming LEE, Huai-Tei YANG, Chun-Chieh WANG, Yueh-Ching PAI, Chi-Jen YANG, Tsung-Ta TANG, Yi-Ting WANG