Patents by Inventor Huan Qi

Huan Qi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190360929
    Abstract: A method for identifying fragmented red blood cells comprising: acquiring side scatter light signals and fluorescence signals of cell particles in a sample liquid; and distinguishing and identifying a fragmented red blood cell population from the cell particles according to the side scatter light signals and the fluorescence signals of the cell particles. The fragmented red blood cell population can be identified from the cell particles by processing and analyzing the side scatter light signals and fluorescence signals of the sample liquid. The present application further provides a device for identifying fragmented red blood cells, a blood cell analyzer and an analysis method. Fragmented red blood cells can be identified according to the fluorescence that characterizes a nucleic acid content in a cell particle and the side scatter light, thus reducing errors in identification and counting.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Applicant: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventors: Wenbo ZHENG, Bo YE, Huan QI, Shan YU, Xiujuan LI, Zhaoyang LI
  • Publication number: 20190277746
    Abstract: A cell analyzer and a sorting method for the cell analyzer are disclosed. Multiple optical signals generated by each of particles irradiated with light in a blood sample in a detection region are collected. The particles includes a first category of particles and a second category of particles. For each of the particles, Intensities of a first group of optical signals, which includes at least two optical signals selected from the multiple optical signals, and a pulse width of a second group of optical signals, which includes at least one optical signal selected from the multiple optical signals are acquired. For each of the particles, one or more reinforcement signals related to the particle are calculated based on an intensity of a first optical signal selected from the first group of optical signals and a pulse width of a second optical signal selected from the second group of optical signals, where the first optical signal is as same as or different from the second optical signal.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 12, 2019
    Inventors: Bo YE, Guanzhen WANG, Jiantao DI, Ying ZHANG, Huan QI
  • Patent number: 10330584
    Abstract: A cell analyzer and a particle sorting method and device are disclosed. The method comprises: acquiring a pulse width of at least one optical signal according to a detected optical signal, selecting at least one optical signal as a combined optical signal, and respectively calculating a signal intensity of the combined optical signal with the pulse width in a combinatorial way to obtain at least one reinforcement signal, where a difference between a first category of particles and a second categories of particles in the reinforcement signal is increased relative to a difference therebetween in the combined optical signal; and on the basis of the reinforcement signal and at least another signal, forming a new scatter diagram, where the at least another signal is one of other reinforcement signals and the optical signal, distinguishing the first category of particles from the second category of particles according to the new scatter diagram.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: June 25, 2019
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Bo Ye, Guanzhen Wang, Jiantao Di, Ying Zhang, Huan Qi
  • Publication number: 20190038694
    Abstract: Provided is a method for preparing a broccoli protein peptide. The method uses a broccoli protein as the raw material, and obtains a broccoli protein peptide powder through the steps of preprocessing, enzymatic hydrolysis, terminating enzymatic hydrolysis, separation, and drying and the like. Also provided is the use of the prepared broccoli protein peptide in resisting oxidation, reducing cholesterol and lowering blood lipids.
    Type: Application
    Filed: May 3, 2016
    Publication date: February 7, 2019
    Inventors: Jidong WANG, Huan QI, Xiaohe ZHENG, Hui ZHANG, Yongdong WANG, Hailing TANG, Haiming LIN
  • Publication number: 20180147248
    Abstract: Provided is a method for preparing a broccoli protein peptide. The method uses a broccoli protein as the raw material, and obtains a broccoli protein peptide powder through the steps of preprocessing, enzymatic hydrolysis, terminating enzymatic hydrolysis, separation, and drying and the like. Also provided is the use of the prepared broccoli protein peptide in resisting oxidation, reducing cholesterol and lowering blood lipids.
    Type: Application
    Filed: May 3, 2016
    Publication date: May 31, 2018
    Inventors: Jidong WANG, Huan QI, Xiaohe ZHENG, Hui ZHANG, Yongdong WANG, Hailing TANG, Haiming LIN
  • Patent number: 9879535
    Abstract: A laser net shape manufactured BLISK, compressor blade, turbine blade or turbine component including a plurality of overlapping predetermined variable bead widths of a material defining a first material layer, a plurality of overlapping predetermined variable bead widths of a material deposited on top of the first material layer, forming a second material layer; and additional material layers deposited on top of the first material layer and the second material layer. The variable bead width of the deposited material is controlled to maintain the approximately constant percent of bead width overlap. A first 2 to 100 deposited powder layers are deposited by a first laser power and the remaining powder layers are deposited by a laser power that is ramped down over the course of depositing the remaining powder layers. In addition, disclosed is A BLISK, compressor blade, turbine blade or turbine component formed by a method.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Huan Qi, Prabhjot Singh, Magdi Naim Azer
  • Publication number: 20170350804
    Abstract: A cell analyzer and a particle sorting method and device are disclosed. The method comprises: acquiring a pulse width of at least one optical signal according to a detected optical signal, selecting at least one optical signal as a combined optical signal, and respectively calculating a signal intensity of the combined optical signal with the pulse width in a combinatorial way to obtain at least one reinforcement signal, where a difference between a first category of particles and a second categories of particles in the reinforcement signal is increased relative to a difference therebetween in the combined optical signal; and on the basis of the reinforcement signal and at least another signal, forming a new scatter diagram, where the at least another signal is one of other reinforcement signals and the optical signal, distinguishing the first category of particles from the second category of particles according to the new scatter diagram.
    Type: Application
    Filed: August 11, 2017
    Publication date: December 7, 2017
    Inventors: Bo YE, Guanzhen WANG, Jiantao DI, Ying ZHANG, Huan QI
  • Publication number: 20170290493
    Abstract: A carrying platform for moving a device within a conduit, the carrying platform comprising: a body configured to be moveable within the conduit; a number of clampers provided on the body and configured to releasably engage the conduit for immobilizing the carrying platform relative to the conduit; and a device engagement mechanism provided on the body and configured to releasably engage the device.
    Type: Application
    Filed: September 29, 2015
    Publication date: October 12, 2017
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Assaf COHEN, Swee Hin TEOH, Huan QI
  • Publication number: 20160076374
    Abstract: A laser net shape manufactured BLISK, compressor blade, turbine blade or turbine component including a plurality of overlapping predetermined variable bead widths of a material defining a first material layer, a plurality of overlapping predetermined variable bead widths of a material deposited on top of the first material layer, forming a second material layer; and additional material layers deposited on top of the first material layer and the second material layer. The variable bead width of the deposited material is controlled to maintain the approximately constant percent of bead width overlap. A first 2 to 100 deposited powder layers are deposited by a first laser power and the remaining powder layers are deposited by a laser power that is ramped down over the course of depositing the remaining powder layers. In addition, disclosed is A BLISK, compressor blade, turbine blade or turbine component formed by a method.
    Type: Application
    Filed: January 31, 2014
    Publication date: March 17, 2016
    Applicant: General Electric Company
    Inventors: Huan Qi, Prabhjot Singh, Magdi Naim Azer
  • Patent number: 9061375
    Abstract: A method is described, for treating a superalloy substrate which includes at least one cavity containing adherent metal oxide material on its surface. A short-pulsed, high repetition rate laser beam is directed against the cavity surface for a period of time sufficient to remove substantially all of the adherent metal oxide material. The laser beam is characterized by a peak power density in the range of about 10 megawatts/cm2 to about 10 gigawatts/cm2. In another embodiment, a high-power, short-pulsed, high repetition rate laser beam is directed to a region on the substrate which includes the cavity, under laser operational conditions which are capable of cutting into the superalloy material; so that a boundary region is formed within the substrate, which encloses the cavity. The cavity can be a crack in a turbine blade, and the crack can be repaired after treatment, by welding, or by another suitable technique.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 23, 2015
    Assignee: General Electric Company
    Inventors: Huan Qi, Bhupendra Kumar Gupta, Marshall Gordon Jones
  • Publication number: 20140308697
    Abstract: The present disclosure relates to the field of medical technology, which provides methods and apparatuses for identifying red blood cells infected by plasmodium. The methods may include: obtaining a forward-scattered light signal, a side-scattered light signal and an optional fluorescence signal from cells in a blood sample; obtaining a first two-dimensional scattergram according to the forward-scattered light signal and the side-scattered light signal, or obtaining a three-dimensional scattergram according to the forward-scattered light signal, the side-scattered light signal and the fluorescence signal; and identifying cells located in a predetermined area of the first two-dimensional scattergram or the three-dimensional scattergram as the red blood cells infected by plasmodium. The apparatuses perform the methods. The methods and apparatuses can have better identification accuracy.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 16, 2014
    Inventors: Bo Ye, Cheng Qian, Huan Qi
  • Patent number: 8691329
    Abstract: A method is disclosed for laser cladding a substrate, comprising providing the substrate; depositing a first determined variable bead width of a material along a toolpath upon the substrate; depositing a second adjacent determined variable bead width of a material along the toolpath which overlaps the first determined variable bead width of deposited material; continuing to deposit a plurality of overlapping predetermined adjacent variable bead widths of a material until a first material layer is complete; forming a second material layer by depositing a plurality of overlapping predetermined variable bead widths of a material on top of the first material layer; and continuing to deposit material layers on top of deposited material layers until the cladding is complete; wherein the variable bead width of the deposited material is controlled by a computer having a plurality of input parameters to maintain an approximately constant percent of bead width overlap.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 8, 2014
    Assignee: General Electric Company
    Inventors: Huan Qi, Prabhjot Singh, Magdi Naim Azer
  • Publication number: 20120164376
    Abstract: A method for the formation of at least one passage hole in a high-temperature substrate is described. For each desired passage hole or group of passage holes, a node is first formed on the exterior surface of the substrate, by a laser consolidation process. The node functions as a pre-selected entry region for each passage hole. The passage hole can then be formed through the node, into the substrate. Related articles, such as turbine engine components, are also described.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Bin Wei, Huan Qi
  • Patent number: 8055471
    Abstract: A method for discriminating particle groups comprises generating, by a particle analyzer, a particle characteristic distribution histogram in which the abscissa indicates respective channels for representing the characteristics of the particles, and the ordinate indicates the particle count; setting a valid area selection height in the particle characteristics distribution histogram; and generating an equivalent negative histogram based on the set height and the particle characteristic distribution histogram.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Huan Qi, Wenjun Tong
  • Publication number: 20110168679
    Abstract: A method is described, for treating a superalloy substrate which includes at least one cavity containing adherent metal oxide material on its surface. A short-pulsed, high repetition rate laser beam is directed against the cavity surface for a period of time sufficient to remove substantially all of the adherent metal oxide material. The laser beam is characterized by a peak power density in the range of about 10 megawatts/cm2 to about 10 gigawatts/cm2. In another embodiment, a high-power, short-pulsed, high repetition rate laser beam is directed to a region on the substrate which includes the cavity, under laser operational conditions which are capable of cutting into the superalloy material; so that a boundary region is formed within the substrate, which encloses the cavity. The cavity can be a crack in a turbine blade, and the crack can be repaired after treatment, by welding, or by another suitable technique.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 14, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Huan Qi, Bhupendra Kumar Gupta, Marshall Gordon Jones
  • Patent number: 7860688
    Abstract: A baseline processing device and method are provided for analyzing signals with uneven distributions of pulses and slow varying baselines. In one embodiment, the device includes an A/D sampling unit for sampling a digital counting signal to obtain sampled data, and a baseline extracting unit for sorting the N sampled data in the sampling sequence by magnitude and for outputting, among the N sample data, one sample data A with a value equal to the mid-value in the N sample data. A phase compensating unit with a width of M, to which a digital signal is input, outputs a sampled data B according to a FIFO sequence, wherein M=N/2. A first subtractor subtracts the sample data A from the sample data B and outputs the result as baseline removed data.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Daxin Huang, Xing Shi, Tianfeng Zhao, Huan Qi
  • Publication number: 20100200189
    Abstract: A method for making a turbine airfoil includes providing a mold core and an outer shell which cooperatively define a cavity in the shape of a hollow airfoil having an outer wall, a root, and a tip. A tip portion of the core extends completely through the portion of the cavity defining the tip of the airfoil. The core is restrained to prevent movement between the core and outer shell. Molten metal is introduced into the cavity and solidified to form an airfoil having at least one outer wall which defines an open tip and a hollow interior. A metallic tip cap is formed on the outer wall which substantially closes off the open tip. The tip cap may be formed by packing the airfoil with metallic powder; and laser sintering the exposed powder so as to form a tip cap which is metallurgically bonded to the outer wall.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 12, 2010
    Applicant: General Electric Company
    Inventors: Huan Qi, Magdi Azer, Prabhjot Singh, Todd Jay Rockstroh, Sudhir K. Tewari, Joseph Giancarlo Sabato, Donald Brett Desander, Mark Douglas Gledhill
  • Publication number: 20100140236
    Abstract: A laser machining system comprises a laser configured to generate a laser output for forming a molten pool on a substrate, a nozzle configured to supply a growth material to the molten pool for depositing the material on the substrate, and an optical unit configured to capture a plurality of grayscale images comprising temperature data during the laser deposition process, wherein the grayscale images correspond to respective ones of a plurality of radiation beams with different desired wavelengths. Further, the laser machining system comprises an image-processing unit configured to process the grayscale images to retrieve the temperature data according to linear relationships between temperatures in the laser deposition process and the corresponding grayscales of the respective images. A laser machining method is also presented.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Guoshang Cai, Kevin George Harding, Magdi Naim Azer, Yong Liu, Sudhir Kumar Tewari, Robert William Tait, Xiaobin Chen, Yanmin Li, Huan Qi, David Henry Abbott
  • Publication number: 20090210170
    Abstract: A method for discriminating particle groups comprises generating, by a particle analyzer, a particle characteristic distribution histogram in which the abscissa indicates respective channels for representing the characteristics of the particles, and the ordinate indicates the particle count; setting a valid area selection height in the particle characteristics distribution histogram; and generating an equivalent negative histogram based on the set height and the particle characteristic distribution histogram.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 20, 2009
    Applicant: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventors: Huan QI, Wenjun TONG
  • Patent number: 7493219
    Abstract: A method for discriminating particle groups comprises generating, by a particle analyzer, a particle characteristic distribution histogram in which the abscissa indicates respective channels for representing the characteristics of the particles, and the ordinate indicates the particle count; setting a valid area selection height in the particle characteristics distribution histogram; and generating an equivalent negative histogram based on the set height and the particle characteristic distribution histogram.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 17, 2009
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co.
    Inventors: Huan Qi, Wenjun Tong