Patents by Inventor Hun-Jan Tao

Hun-Jan Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6864193
    Abstract: A composition and method for fabricating a semiconductor wafer containing copper is disclosed, which method includes plasma etching a dielectric layer from the surface of the wafer, plasma ashing a resist from the surface of the wafer, and cleaning the wafer surface by contacting same with a cleaning formulation, which includes the following components and their percentage by weight ranges shown: (a) from about 0.01 to 80% by weight organic solvent, (b) from about 0.01 to 30% by weight copper chelating agent, (c) from about 0.01 to 10% by weight copper inhibitor, and (d) from about 0.01 to 70% by weight water.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: March 8, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Patent number: 6849531
    Abstract: A method of defining a gate structure for a MOSFET device featuring the employment of dual anti-reflective coating (ARC) layers to enhance gate structure resolution, and featuring a dry procedure for removal of all ARC layers avoiding the use of hot phosphoric acid, has been developed. After formation of a polysilicon layer on an underlying silicon dioxide gate insulator layer, a capping silicon oxide, a dielectric ARC layer, and an overlying organic ARC layer are deposited. A photoresist shape is formed and used as an etch mask to allow a first anisotropic RIE procedure to define the desired gate structure shape in the dual ARC layers and in the capping silicon oxide layer. After removal of the photoresist shape and the overlying organic ARC layer a second anisotropic RIE procedure is used to define a desired polysilicon gate structure, with the second anisotropic RIE procedure also resulting in the removal of the dielectric ARC shape.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 1, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Te S. Lin, Fang-Chen Cheng, Huin-Jer Lin, Yuan-Hung Chiu, Hun-Jan Tao
  • Publication number: 20050010000
    Abstract: Low-k organosilicate dielectric material can be exposed to a series of reagents, including a halogenation reagent, an alkylation reagent, and a termination reagent, in order to reverse degradation of dielectric properties caused by previous processing steps.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 13, 2005
    Inventors: Peng-Fu Hsu, Jyu-Horng Shieh, Yung-Cheng Lu, Hun-Jan Tao, Yuan-Hung Chiu
  • Publication number: 20040262262
    Abstract: A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method may further include a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Inventors: Hsien-Kuang Chiu, Baw-Ching Perng, Hun-Jan Tao
  • Publication number: 20040266134
    Abstract: A process is described for transferring a photoresist pattern into a substrate. In one embodiment a stack comprised of a top photoresist layer, a middle ARC layer, and a bottom hardmask is formed over a gate electrode layer. A line in the photoresist pattern is anisotropically transferred through the ARC and hardmask. Then an isotropic etch to trim the linewidth by 0 to 50 nm per edge is performed simultaneously on the photoresist, ARC and hardmask. This method minimizes the amount of line end shortening to less than three times the dimension trimmed from one line edge. Since a majority of the photoresist layer is retained, the starting photoresist thickness can be reduced by 1000 Angstroms or more to increase process window. The pattern is then etched through the underlying layer to form a gate electrode. The method can also be used to form STI features in a substrate.
    Type: Application
    Filed: July 27, 2004
    Publication date: December 30, 2004
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Jie Huang, Hun-Jan Tao
  • Publication number: 20040262260
    Abstract: A method of etching multi-layer films, the method including: (1) etching a plurality of layers according to etching parameters, (2) determining a plurality of optical characteristics each associated with one of the plurality of layers and determined during the etching of the associated one of the plurality of layers, and (3) determining dynamic etch progressions each based on one of the plurality of optical characteristics that is associated with a particular one of the plurality of layers undergoing the etching.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: Hui Ou Yang, Miao-Ju Hsu, Chao-Cheng Chen, Hun-Jan Tao
  • Publication number: 20040248414
    Abstract: An improved method of etching very small contact holes through dielectric layers used to separate conducting layers in multilevel integrated circuits formed on semiconductor substrates has been developed. The method uses bi-level ARC coatings in the resist structure and a unique combination of gaseous components in a plasma etching process which is used to dry develop the bi-level resist mask as well as etch through a silicon oxide dielectric layer. The gaseous components comprise a mixture of a fluorine containing gas, such as C4F8, C5F8, C4F6, CHF3 or similar species, an inert gas, such as helium or argon, an optional weak oxidant, such as CO or O2 or similar species, and a nitrogen source, such as N2, N2O, or NH3 or similar species. The patterned masking layer can be used to reliably etch contact holes in silicon oxide layers on semiconductor substrates, where the holes have diameters of about 0.1 micron or less.
    Type: Application
    Filed: July 12, 2004
    Publication date: December 9, 2004
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Huan Tsai, Hun-Jan Tao, Tsang Jiuh Wu, Ju Wang Hsu
  • Patent number: 6828248
    Abstract: A method of pull back for a shallow trench isolation (STI) structure is provided. The method firstly provides a substrate having a hard mask layer disposed thereupon and a dielectric layer above the hard mask layer. Then a trench is formed within the hard mask layer, the dielectric layer and the substrate. Finally, the hard mask layer and the dielectric layer are pulled back by using a halogen containing etching process.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: December 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hun-Jan Tao, Huan-Just Lin
  • Patent number: 6828205
    Abstract: A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ming-Huan Tsai, Ming-Jie Huang, Huan-Just Lin, Hun-Jan Tao
  • Patent number: 6821880
    Abstract: A process of dual damascene or damascene. The dual damascene process entails providing an etching apparatus, a DCM machine and a wafer, the wafer having a metal line, a stop layer, a dielectric layer, a contact, and a photoresist layer. The dielectric layer and the contact are etched in the etching apparatus to form a trench. The photoresist and the contact are ashed in the DCM machine. Finally the wafer is wet cleaned.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: November 23, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Hun-Jan Tao, Chao-Cheng Chen
  • Patent number: 6812044
    Abstract: A method for monitoring plasma parameters during a plasma process such as a plasma etching process, comparing the measured plasma parameters to predetermined parameter specifications, and either terminating the plasma process or modifying the plasma process in progress to re-establish the plasma parameters within the parameter specifications. The plasma parameters may be measured by the self-excited electron resonance spectroscopy (SEEKS) technique or by microwave interferometry.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: November 2, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Hsien-Kuang Chiu, Bor-Wen Chan, Baw-Ching Perng, Yuan-Hung Chiu, Hun-Jan Tao
  • Publication number: 20040209437
    Abstract: A process for forming a shallow trench isolation (STI), region in a strained silicon layer and in a top portion of an underlying, relaxed silicon-germanium layer, has been developed. The process features definition of a first opening in a silicon nitride stop layer via an anisotropic RIE procedure, using a photoresist shape as an etch mask. A following RIE procedure using HBr—Cl2—O2 as an etchant is next performed, defining a second opening, or a shallow trench shape opening in a strained silicon layer and in a top portion of the underlying relaxed silicon-germanium layer.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co.
    Inventors: Hsien-Kuang Chiu, Fang Cheng Chen, Hun-Jan Tao
  • Publication number: 20040187891
    Abstract: A cavitation cleaning system and method for using the same to remove particulate contamination from a substrate including providing at least one substrate immersed in a cleaning solution said cleaning solution contained in a cleaning solution container. The container further includes means for producing gaseous cavitation bubbles of ultrasound energy, said gaseous cavitation bubbles arranged to contact at least a portion of the at least one substrate; applying ultrasound energy to create gaseous cavitation bubbles to contact the substrate to remove adhering residual particles in a substrate surface cleaning process; and, recirculating the cleaning solution through a particulate filtering means.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Publication number: 20040182822
    Abstract: A method for compensating CD variations across a semiconductor process wafer surface in a plasma etching process including a semiconductor wafer having a process surface comprising patterned features; carrying out a first plasma etching process wherein the semiconductor wafer is heated to at least two selectively controllable temperature zones; determining a first dimensional variation of etched features with respect to reference dimensions over predetermined areas of the process surface including the two selectively controllable temperature zones; determining operating temperatures for the two selectively controllable temperature zones to achieve a targeted dimensional variation change in the first dimensional variation to achieve a desired second dimensional variation; plasma etching the process surface to the desired operating temperatures; and, determining an actual dimensional variation change for use in at least one subsequent plasma etching process.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Shiun Chen, Ming-Ching Chang, Huan-Just Lin, Li-Te S. Lin, Yung -Hung Chiu, Hun-Jan Tao
  • Publication number: 20040185584
    Abstract: A method for compensating for CD variations across a semiconductor process wafer surface in a plasma etching process including providing a semiconductor wafer having a process surface including photolithographically developed features imaged from a photomask; determining a first dimensional variation of the features with respect to corresponding photomask dimensions along at least one wafer surface direction to determine a first levelness of the process surface; determining gas flow parameters in a plasma reactor for a plasma etching process required to approach a level process surface by reference to an archive of previous plasma etching process parameters carried out in the plasma reactor; carrying out the plasma etching process in the plasma rector according to the determined gas flow parameters; and, determining a second dimensional variation of the features along the at least one wafer surface direction to determine a second levelness of the process surface.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Te S. Lin, Yui Wang, Ming-Ching Chang, Li-Shung Chen, Huain-Jelin Lin, Yuan-Hung Chiu, Hun-Jan Tao
  • Patent number: 6794302
    Abstract: A method for compensating CD variations across a semiconductor process wafer surface in a plasma etching process including a semiconductor wafer having a process surface comprising patterned features; carrying out a first plasma etching process wherein the semiconductor wafer is heated to at least two selectively controllable temperature zones; determining a first dimensional variation of etched features with respect to reference dimensions over predetermined areas of the process surface including the two selectively controllable temperature zones; determining operating temperatures for the two selectively controllable temperature zones to achieve a targeted dimensional variation change in the first dimensional variation to achieve a desired second dimensional variation; plasma etching the process surface to the desired operating temperatures; and, determining an actual dimensional variation change for use in at least one subsequent plasma etching process.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: September 21, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Li-Shiun Chen, Ming-Ching Chang, Huan-Just Lin, Li-Te S. Lin, Yung-Hog Chiu, Hun-Jan Tao
  • Patent number: 6794230
    Abstract: A process is described for transferring a photoresist pattern into a substrate. In one embodiment a stack comprised of a top photoresist layer, a middle ARC layer, and a bottom hardmask is formed over a gate electrode layer. A line in the photoresist pattern is anisotropically transferred through the ARC and hardmask. Then an isotropic etch to trim the linewidth by 0 to 50 nm per edge is performed simultaneously on the photoresist, ARC and hardmask. This method minimizes the amount of line end shortening to less than three times the dimension trimmed from one line edge. Since a majority of the photoresist layer is retained, the starting photoresist thickness can be reduced by 1000 Angstroms or more to increase process window. The pattern is then etched through the underlying layer to form a gate electrode. The method can also be used to form STI features in a substrate.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: September 21, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company, LTD.
    Inventors: Ming-Jie Huang, Hun-Jan Tao
  • Publication number: 20040175964
    Abstract: A composition and method for fabricating a semiconductor wafer containing copper is disclosed, which method includes plasma etching a dielectric layer from the surface of the wafer, plasma ashing a resist from the surface of the wafer, and cleaning the wafer surface by contacting same with a cleaning formulation, which includes the following components and their percentage by weight ranges shown: (a) from about 0.01 to 80% by weight organic solvent, (b) from about 0.01 to 30% by weight copper chelating agent, (c) from about 0.01 to 10% by weight copper inhibitor, and (d) from about 0.01 to 70% by weight water.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 9, 2004
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Patent number: 6787455
    Abstract: A method for semiconductor device feature development using a bi-layer photoresist including providing a non-silicon containing photoresist layer over a substrate; providing a silicon containing photoresist over the non-silicon containing photoresist layer; exposing said silicon containing photoresist layer to an activating light source an exposure surface defined by an overlying pattern according to a photolithographic process; developing said silicon containing photoresist layer according to a photolithographic process to reveal a portion the non-silicon containing photoresist layer; and, dry developing said non-silicon containing photoresist layer in a plasma reactor by igniting a plasma from an ambient mixture including at least oxygen, carbon monoxide, and argon.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ming-Huan Tsai, Hun-Jan Tao, Ju-Wang Hsu, Cheng-Ku Chen
  • Patent number: 6780782
    Abstract: An improved method of etching very small contact holes through dielectric layers used to separate conducting layers in multilevel integrated circuits formed on semiconductor substrates has been developed. The method uses bi-level ARC coatings in the resist structure and a unique combination of gaseous components in a plasma etching process which is used to dry develop the bi-level resist mask as well as etch through a silicon oxide dielectric layer. The gaseous components comprise a mixture of a fluorine containing gas, such as C4F8, C5F8, C4F6, CHF3 or similar species, an inert gas, such as helium or argon, an optional weak oxidant, such as CO or O2 or similar species, and a nitrogen source, such as N2, N2O, or NH3 or similar species. The patterned masking layer can be used to reliably etch contact holes in silicon oxide layers on semiconductor substrates, where the holes have diameters of about 0.1 micron or less.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: August 24, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Huan Tsai, Hun-Jan Tao, Tsang Jiuh Wu, Ju Wang Hsu