Patents by Inventor Hung-Hua Lin

Hung-Hua Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20240105901
    Abstract: In an embodiment, a device includes: an interconnect structure including a first contact pad, a second contact pad, and an alignment mark; a light emitting diode including a cathode and an anode, the cathode connected to the first contact pad; an encapsulant encapsulating the light emitting diode; a first conductive via extending through the encapsulant, the first conductive via including a first seed layer, the first seed layer contacting the second contact pad; a second conductive via extending through the encapsulant, the second conductive via including a second seed layer, the first seed layer and the second seed layer including a first metal; and a hardmask layer between the second seed layer and the alignment mark, the hardmask layer including a second metal, the second metal different from the first metal.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: Chen-Hua Yu, Keng-Han Lin, Hung-Jui Kuo, Hui-Jung Tsai
  • Patent number: 11932534
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Publication number: 20240087879
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 11923413
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a substrate and nanostructures formed over the substrate. The semiconductor structure further includes a gate structure surrounding the nanostructures and a source/drain structure attached to the nanostructures. The semiconductor structure further includes a contact formed over the source/drain structure and extending into the source/drain structure.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon-Jhy Liaw, Chao-Ching Cheng, Hung-Li Chiang, Shih-Syuan Huang, Tzu-Chiang Chen, I-Sheng Chen, Sai-Hooi Yeong
  • Patent number: 11923425
    Abstract: A method for manufacturing a device may include providing an ultra-high voltage (UHV) component that includes a source region and a drain region, and forming an oxide layer on a top surface of the UHV component. The method may include connecting a low voltage terminal to the source region of the UHV component, and connecting a high voltage terminal to the drain region of the UHV component. The method may include forming a shielding structure on a surface of the oxide layer provided above the drain region of the UHV component, forming a high voltage interconnection that connects to the shielding structure and to the high voltage terminal, and forming a metal routing that connects the shielding structure and the low voltage terminal.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Cheng Chiu, Tian Sheng Lin, Hung-Chou Lin, Yi-Min Chen, Chiu-Hua Chung
  • Patent number: 11854795
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 11827513
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuei-Sung Chang, Tai-Bang An, Chun-Wen Cheng, Hung-Hua Lin
  • Publication number: 20230371383
    Abstract: In some embodiments, the present disclosure relates to a piezomicroelectromechanical system (piezoMEMS) device that includes a second piezoelectric layer arranged over the first electrode layer. A second electrode layer is arranged over the second piezoelectric layer. A first contact is arranged over and extends through the second electrode layer and the second piezoelectric layer to contact the first electrode layer. A dielectric liner layer is arranged directly between the first contact and inner sidewalls of the second electrode layer and the second piezoelectric layer. A second contact is arranged over and electrically coupled to the second electrode layer, wherein the second contact is electrically isolated from the first contact.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Yi-Ren Wang, Hung-Hua Lin, Yuan-Chih Hsieh
  • Publication number: 20230365398
    Abstract: A MEMS support structure and a cap structure are provided. At least one vertically-extending trench is formed into the MEMS support structure or a portion of the cap structure. A vertically-extending outgassing material portion having a surface that is physically exposed to a respective vertically-extending cavity is formed in each of the at least one vertically-extending trench. A matrix material layer is attached to the MEMS support structure. A movable element laterally confined within a matrix layer is formed by patterning the matrix material layer. The matrix layer is bonded to the cap structure. A sealed chamber containing the movable element is formed. Each vertically-extending outgassing material portion has a surface that is physically exposed to the sealed chamber, and outgases a gas to increase the pressure in the sealed chamber.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Kuei-Sung Chang, Tai-Bang An, Chun-Wen Cheng, Hung-Hua Lin
  • Patent number: 11812664
    Abstract: In some embodiments, the present disclosure relates to a piezomicroelectromechanical system (piezoMEMS) device that includes a second piezoelectric layer arranged over the first electrode layer. A second electrode layer is arranged over the second piezoelectric layer. A first contact is arranged over and extends through the second electrode layer and the second piezoelectric layer to contact the first electrode layer. A dielectric liner layer is arranged directly between the first contact and inner sidewalls of the second electrode layer and the second piezoelectric layer. A second contact is arranged over and electrically coupled to the second electrode layer, wherein the second contact is electrically isolated from the first contact.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ren Wang, Hung-Hua Lin, Yuan-Chih Hsieh
  • Publication number: 20230249961
    Abstract: The present disclosure provides a micro electro mechanical system (MEMS) structure, including a device substrate having a first region and a second region different from the first region, a capping substrate bonded over the device substrate, a first cavity in the first region and between the device substrate and capping substrate, wherein the first cavity has a first cavity pressure, a second cavity in the second region and between the device substrate and capping substrate, wherein the second cavity has a second cavity pressure lower than the first cavity pressure, an outgassing material, wherein the outgassing material includes a top surface and a sidewall exposed to the first cavity, the outgassing material is free from being in direct contact with the capping substrate, wherein the outgassing material includes a trench, and a passivation layer disposed over the device substrate, and is in direct contact with the outgassing material.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: YUAN-CHIH HSIEH, HUNG-HUA LIN
  • Patent number: 11634318
    Abstract: The present disclosure provides a micro electro mechanical system (MEMS) structure, including a device substrate having a first region and a second region different from the first region, a capping substrate bonded over the device substrate, a first cavity in the first region and between the device substrate and capping substrate, wherein the first cavity has a first cavity pressure, a second cavity in the second region and between the device substrate and capping substrate, wherein the second cavity has a second cavity pressure lower than the first cavity pressure, a passivation layer in the first cavity, an outgassing material over the passivation layer, wherein the outgassing material comprises a top surface and a sidewall exposed to the first cavity.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yuan-Chih Hsieh, Hung-Hua Lin
  • Publication number: 20220340413
    Abstract: The present disclosure provides a micro electro mechanical system (MEMS) structure, including a device substrate having a first region and a second region different from the first region, a capping substrate bonded over the device substrate, a first cavity in the first region and between the device substrate and capping substrate, wherein the first cavity has a first cavity pressure, a second cavity in the second region and between the device substrate and capping substrate, wherein the second cavity has a second cavity pressure lower than the first cavity pressure, an outgassing material, wherein the outgassing material includes a top surface and a sidewall exposed to the first cavity, the outgassing material is free from being in direct contact with the capping substrate, wherein the outgassing material includes a trench, and a passivation layer disposed over the device substrate, and is in direct contact with the outgassing material.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Inventors: YUAN-CHIH HSIEH, HUNG-HUA LIN
  • Publication number: 20220325396
    Abstract: A microstructure may be provided by forming a metal layer such as a molybdenum layer over a substrate. An aluminum nitride layer is formed on a top surface of the metal layer. A surface portion of the aluminum nitride layer is converted into a continuous aluminum oxide-containing layer by oxidation. A dielectric spacer layer may be formed over the continuous aluminum oxide-containing layer. Contact via cavities extending through the dielectric spacer layer, the continuous aluminum oxide containing layer, and the aluminum nitride layer and down to a respective portion of the at least one metal layer may be formed using etch processes that contain a wet etch step while suppressing formation of an undercut in the aluminum nitride layer. Contact via structures may be formed in the contact via cavities. The microstructure may include a micro-electromechanical system (MEMS) device containing a piezoelectric transducer.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Inventors: Yuan-Chih Hsieh, Yi-Ren Wang, Hung-Hua Lin
  • Publication number: 20220219973
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip, where the method includes forming an interconnect structure over a first substrate. A dielectric structure is formed over the interconnect structure. The dielectric structure comprises opposing sidewalls defining an opening. A conductive bonding structure is formed on a second substrate. A bonding process is performed to bond the conductive bonding structure to the interconnect structure. The conductive bonding structure is disposed in the opening. The bonding process defines a first cavity between inner opposing sidewalls of the conductive bonding structure and a second cavity between the conducive bonding structure and the opposing sidewalls of the dielectric structure.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: Hung-Hua Lin, Chia-Ming Hung, Xin-Hua Huang, Yuan-Chih Hsieh
  • Publication number: 20220216052
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20220204340
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Patent number: 11371133
    Abstract: A microstructure may be provided by forming a metal layer such as a molybdenum layer over a substrate. An aluminum nitride layer is formed on a top surface of the metal layer. A surface portion of the aluminum nitride layer is converted into a continuous aluminum oxide-containing layer by oxidation. A dielectric spacer layer may be formed over the continuous aluminum oxide-containing layer. Contact via cavities extending through the dielectric spacer layer, the continuous aluminum oxide-containing layer, and the aluminum nitride layer and down to a respective portion of the at least one metal layer may be formed using etch processes that contain a wet etch step while suppressing formation of an undercut in the aluminum nitride layer. Contact via structures may be formed in the contact via cavities. The microstructure may include a micro-electromechanical system (MEMS) device containing a piezoelectric transducer.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: June 28, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yuan-Chih Hsieh, Yi-Ren Wang, Hung-Hua Lin