Patents by Inventor Hung-Kai Chen

Hung-Kai Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190125836
    Abstract: Disclosed are methods and compositions useful in preventing or treating a disease related to muscle wasting by using acidic fibroblast growth factor (aFGF).
    Type: Application
    Filed: October 30, 2018
    Publication date: May 2, 2019
    Applicant: Eusol Biotech Co., Ltd.
    Inventors: Hung-Kai CHEN, Jing-Yi HUANG, Huey-Wen HSIAO, Che-Ming YEH
  • Publication number: 20180329570
    Abstract: The driving apparatus for driving a touch display panel includes a first voltage generating circuit configured to generate a common reference voltage, a second voltage generating circuit configured to generate a touch driving signal, and a control circuit configured to generate a switching signal. The switching signal is at the first voltage level during display periods for providing the common reference voltage to the touch display panel. The switching signal is at the second voltage level during touch periods for providing the touch driving signal to the touch display panel. A first touch display period includes a first display period a first touch period adjacent to the first display period. A second touch display period includes a second display period and a second touch period adjacent to the second display period. The first touch display period and the second touch display period are different in time length.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventors: Feng-Lin CHAN, Hung-Kai CHEN, Yuan-Fu HSUEH, Chun-Yuan PAI
  • Patent number: 9659776
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20160260610
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 8, 2016
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Patent number: 9362404
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Patent number: 9224737
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Kai Chen, Hsien-Hsin Lin, Chia-Pin Lin, Chien-Tai Chan, Yuan-Ching Peng
  • Publication number: 20150243739
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20150115322
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Application
    Filed: November 26, 2014
    Publication date: April 30, 2015
    Inventors: Hung-Kai CHEN, Hsien-Hsin LIN, Chia-Pin LIN, Chien-Tai CHAN, Yuan-Ching PENG
  • Patent number: 8937353
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Kai Chen, Hsien-Hsin Lin, Chia-Pin Lin, Chien-Tai Chan, Yuan-Ching Peng
  • Publication number: 20110210393
    Abstract: A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Kai Chen, Hsien-Hsin Lin, Chia-Pin Lin, Chien-Tai Chan, Yuan-Ching Peng
  • Patent number: 7491112
    Abstract: A mobile robotic device capable of collision detection includes a base frame, two connecting rods pivotably mounted to the base frame for contact with the switches, two gearboxes slidably mounted at bilateral sides of the base frame respectively, two driving mechanisms connected with the gearboxes, two switches mounted to the base frame for generating signals, two springy members connected with the base frame and the connecting rods for keeping the gearboxes rebounding backward, two wheels mounted to the two gearboxes respectively, and a control system mounted to the base frame for receiving the signals from the switches and driving the driving mechanisms and thus driving clockwise or counterclockwise rotation of the wheels.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: February 17, 2009
    Assignee: E-Supply Insternational Co., Ltd.
    Inventor: Hung-Kai Chen
  • Patent number: 7411744
    Abstract: An obstacle-detectable mobile robotic device includes a frame body capable of traveling on a surface, a control circuit mounted to the frame body for controlling the traveling manner and direction of the frame body, and a detection system mounted to the frame body and electrically connected with the control circuit. The detection system has an optical emitter, an optical receiver, and a reflector. The optical emitter emits the light onto the surface, and the light is reflected onto the reflector and then to the optical receiver to be received by the optical receiver. A receiving area generated by the optical receiver on the reflector never overlaps the surface. Accordingly, the obstacle-detectable mobile robotic device can effectively avoid ambient light pollution to have preferable detection potency.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: August 12, 2008
    Assignee: E-Supply International Co., Ltd.
    Inventor: Hung-Kai Chen
  • Publication number: 20070167109
    Abstract: A mobile robotic device capable of collision detection includes a base frame, two connecting rods pivotably mounted to the base frame for contact with the switches, two gearboxes slidably mounted at bilateral sides of the base frame respectively, two driving mechanisms connected with the gearboxes, two switches mounted to the base frame for generating signals, two springy members connected with the base frame and the connecting rods for keeping the gearboxes rebounding backward, two wheels mounted to the two gearboxes respectively, and a control system mounted to the base frame for receiving the signals from the switches and driving the driving mechanisms and thus driving clockwise or counterclockwise rotation of the wheels.
    Type: Application
    Filed: April 26, 2006
    Publication date: July 19, 2007
    Applicant: E-SUPPLY INTERNATIONAL CO., LTD.
    Inventor: Hung-Kai Chen
  • Publication number: 20070145235
    Abstract: An obstacle-detectable mobile robotic device includes a frame body capable of traveling on a surface, a control circuit mounted to the frame body for controlling the traveling manner and direction of the frame body, and a detection system mounted to the frame body and electrically connected with the control circuit. The detection system has an optical emitter, an optical receiver, and a reflector. The optical emitter emits the light onto the surface, and the light is reflected onto the reflector and then to the optical receiver to be received by the optical receiver. A receiving area generated by the optical receiver on the reflector never overlaps the surface. Accordingly, the obstacle-detectable mobile robotic device can effectively avoid ambient light pollution to have preferable detection potency.
    Type: Application
    Filed: June 19, 2006
    Publication date: June 28, 2007
    Applicant: E-SUPPLY INTERNATIONAL CO., LTD.
    Inventor: Hung-Kai Chen
  • Publication number: 20060170278
    Abstract: A wheel installation assistant is comprised of a sleeve and an elongated guide section. The sleeve includes an inner diameter which is slightly larger than that of one screw mounted on a vehicle for fitting onto the screw. The sleeve includes a stopping portion inside for contacting against the screw and stopping the screw from further insertion thereinto. The guide section can run through one screw hole of a wheel, having an end connected with the sleeve and the other end extending sidewards for defining a distance from the sleeve in elevation. While applied to the wheel installation, the wheel installation assistant helps the user install the wheel easily and laborsavingly.
    Type: Application
    Filed: February 1, 2005
    Publication date: August 3, 2006
    Applicant: INFINITE ELECTRONICS INC.
    Inventor: Hung-Kai Chen