Patents by Inventor Hung Pham

Hung Pham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10524670
    Abstract: In one aspect, the present disclosure relates to a method including obtaining, by a fitness tracking device, a plurality of heart rate measurements of the user over a period of time, wherein the plurality of heart rate measurements can include heart rate data from a heart rate sensor of the fitness tracking device; analyzing, by the fitness tracking device, the plurality of heart rate measurements to determine a rate of change of a heart rate of the user during the period of time; determining, by the fitness tracking device, that the user is experiencing an onset phase if the rate of change of the heart rate during the period of time is greater than zero; determining, by the fitness tracking device, that the user is experiencing a cool-down phase if the rate of change of the heart rate during the period of time is less than zero; estimating, by the fitness tracking device, a first rate of energy expenditure of the user if the user is experiencing an onset phase using an onset calorimetry model; and estimating
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 7, 2020
    Assignee: APPLE INC.
    Inventors: Karthik Jayaraman Raghuram, Hung A. Pham, Richard Channing Moore, III, Alexander Singh Alvarado, Umamahesh Srinivas, Xing Tan
  • Patent number: 10506522
    Abstract: In some implementations, a mobile device can analyze motion sensor data and proximity sensor data during a voice call to determine whether the mobile device is on a stationary object or worn on a user's body (e.g., in the lap or pocket of a user of the mobile device). The mobile device can adjust the transmit power level of the telephony transceiver during the voice call based on the determination.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: December 10, 2019
    Assignee: Apple Inc.
    Inventors: Ben-Heng Juang, Hue Duc Tran, Hung A. Pham, Adam S. Howell, Hengliang Zhang, Gunes Dervisoglu
  • Publication number: 20190368884
    Abstract: Embodiments are disclosed for indoor/outdoor detection using a mobile device, such as wearable computer (e.g., smartwatch). In an embodiment, a method comprises: receiving, by one or more processors of a wearable computer, wireless access point (AP) scan data, global navigation satellite system (GNSS) data and inertial sensor data; determining, by the one or more processors, a first state of the wearable computer based on the wireless AP scan data; determining, by the one or more processors, a second state of the wearable computer based on a comparison of the GNSS data and the inertial sensor data; and outputting, by the one or more processors, an indoor/outdoor signal indicating that the wearable computer is indoors or outdoors based on the first and second states.
    Type: Application
    Filed: September 28, 2018
    Publication date: December 5, 2019
    Applicant: Apple Inc.
    Inventors: Vinay R. Majjigi, Suresh B. Malakar, Bharath Narasimha Rao, Karthik Jayaraman Raghuram, Hung A. Pham
  • Publication number: 20190365286
    Abstract: Embodiments are disclosed for passive tracking of dyskinesia and tremor symptoms using a wearable computer. In an embodiment, a method comprises: obtaining, by one or more motion sensors of a computer attached to a user's limb, motion data; extracting, by one or more processors of the computer, one or more features from the motion data that are potentially indicative of dyskinesia or tremor; determining, by one or more processors of the computer and based on the one or more extracted features, the likelihood of dyskinesia or tremor; generating, by the one or more processors, data indicating the likelihood of dyskinesia or tremor; and outputting, by the one or more processors, the data through an output device of the computer.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 5, 2019
    Applicant: Apple Inc.
    Inventors: William R. Powers, III, Maryam Etezadi-Amoli, Adeeti V. Ullal, Daniel Trietsch, Sara Kianian, Hung A. Pham
  • Publication number: 20190342651
    Abstract: Ear buds may have optical proximity sensors and accelerometers. Control circuitry may analyze output from the optical proximity sensors and the accelerometers to identify a current operational state for the ear buds. The control circuitry may also analyze the accelerometer output to identify tap input such as double taps made by a user on ear bud housings. Samples in the accelerometer output may be analyzed to determine whether the samples associated with a tap have been clipped. If the samples have been clipped, a curve may be fit to the samples. Optical sensor data may be analyzed in conjunction with potential tap input data from the accelerometer. If the optical sensor data is ordered, a tap input may be confirmed. If the optical sensor data is disordered, the control circuitry can conclude that accelerometer data corresponds to false tap input associated with unintentional contact with the housing.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 7, 2019
    Inventors: Adam S. Howell, Hung A. Pham, Akifumi Kobashi, Rami Y. Hindiyeh, Xing Tan, Alexander Singh Alvarado, Karthik Jayaraman Raghuram
  • Patent number: 10440174
    Abstract: Systems, methods, and computer-readable media for managing or classifying movement states of an electronic device are provided that may utilize communications circuitry data from one or more communications circuitries when determining a current or future movement state of an electronic device.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 8, 2019
    Assignee: APPLE INC.
    Inventors: Andre M. Boule, Andrew M. Wadycki, Bor-rong Chen, Emily C. Schubert, Srinivasan Nimmala, Sunny K. Chow, Gunes Dervisoglu, Venkateswara Rao Manepalli, Vijay Kumar Ramamurthi, Anh N. Phan, Maulik V. Choksi, John D. Blackwell, Xiao Xiao, Xiaoyuan Tu, Hung A. Pham, Richard B. Warren, Ronald K. Huang
  • Publication number: 20190209948
    Abstract: The present invention relates generally to a method of reducing the level of at least one protein selected from the group consisting of plasminogen, tissue plasminogen activator and other protease(s) in a solution comprising at least one protein selected from the group consisting of fibrinogen, Factor VIII and von Willebrand factor (VWF), the method comprising: (i) passing a feedstock comprising at least one protein selected from the group consisting of fibrinogen, Factor VIII and VWF through a hydrophobic charge-induction chromatographic resin under conditions selected such that at least one protein selected from the group consisting of plasminogen, tissue plasminogen activator and other protease(s) present in the feedstock is bound to the resin; and (ii) recovering a solution comprising the at least one protein selected from the group consisting of fibrinogen, Factor VIII and VWF which passes through the resin, wherein the concentration of the at least one protein selected from the group consisting of pl
    Type: Application
    Filed: December 10, 2018
    Publication date: July 11, 2019
    Applicant: CSL Behring GmbH
    Inventors: Hung Pham, Jeffrey Michael Hey, Darren Nguy
  • Publication number: 20190159170
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson
  • Patent number: 10291975
    Abstract: Ear buds may have optical proximity sensors and accelerometers. Control circuitry may analyze output from the optical proximity sensors and the accelerometers to identify a current operational state for the ear buds. The control circuitry may also analyze the accelerometer output to identify tap input such as double taps made by a user on ear bud housings. Samples in the accelerometer output may be analyzed to determine whether the samples associated with a tap have been clipped. If the samples have been clipped, a curve may be fit to the samples. Optical sensor data may be analyzed in conjunction with potential tap input data from the accelerometer. If the optical sensor data is ordered, a tap input may be confirmed. If the optical sensor data is disordered, the control circuitry can conclude that accelerometer data corresponds to false tap input associated with unintentional contact with the housing.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: May 14, 2019
    Assignee: Apple Inc.
    Inventors: Adam S. Howell, Hung A. Pham, Akifumi Kobashi, Rami Y. Hindiyeh, Xing Tan, Alexander Singh Alvarado, Karthik Jayaraman Raghuram
  • Publication number: 20190103007
    Abstract: In an example method, a mobile device obtains a signal indicating an acceleration measured by a sensor over a time period. The mobile device determines an impact experienced by the user based on the signal. The mobile device also determines, based on the signal, one or more first motion characteristics of the user during a time prior to the impact, and one or more second motion characteristics of the user during a time after the impact. The mobile device determines that the user has fallen based on the impact, the one or more first motion characteristics of the user, and the one or more second motion characteristics of the user, and in response, generates a notification indicating that the user has fallen.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 4, 2019
    Inventors: Xing Tan, Huayu Ding, Parisa Dehleh Hossein-Zadeh, Harshavardhan Mylapilli, Hung A. Pham, Karthik Jayaraman Raghuram, Yann Jerome Julien Renard, Sheena Sharma, Alexander Singh Alvarado, Umamahesh Srinivas, Xiaoyuan Tu, Hengliang Zhang, Geoffrey Louis Chi-Johnston, Vivek Garg
  • Publication number: 20190101387
    Abstract: An electronic device may include a motion sensor for detecting movement of the electronic device and a pressure sensor for detecting changes in elevation of the electronic device. Applications that run on the electronic device such as health and fitness applications may use motion sensor and pressure sensor data to track a user's physical activity. For example, processing circuitry in the electronic device may use the motion sensor to track a user's steps and the pressure sensor to track changes in the user's elevation. The processing circuitry may determine whether the user is climbing stairs based on the user's step rate and the user's changes in elevation. When the processing circuitry determines that the user is climbing stairs, the processing circuitry may use the pressure sensor and motion sensor to track and store the number of flights of stairs climbed by the user.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Inventors: Stephen P. Jackson, Hung A. Pham, Anh N. Phan, Shameek P. Ganguly
  • Patent number: 10244948
    Abstract: Systems and methods are disclosed for tracking physiological states and parameters for calorie estimation. A start of an exercise session associated with a user of a wearable computing device is determined. Heart rate data is measured for a first period of time. An onset heart rate value of the user is determined based on the measured heart rate data, the onset heart rate value associated with a lowest valid heart rate measured during the first period of time. A resting heart rate parameter (RHR) of a calorimetry model is associated with at least one of the onset heart rate value, a preset RHR, and an RHR based on user biometric data. Energy expenditure of the user during a second period of time is estimated based on the calorimetry model and a plurality of heart rate measurements obtained by the wearable computing device during the second period of time.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 2, 2019
    Inventors: Hung A. Pham, Craig Mermel, Richard Channing Moore, III, Karthik Jayaraman Raghuram, Adeeti Ullal, Alexander Singh Alvarado, Xing Tan
  • Patent number: 10197396
    Abstract: A method for performing continuous calibration of a magnetometer in a device includes during operation of a device, continually performing magnetometer measurements; continuously determining a state of the device; determining a magnetometer calibration model based on the magnetometer measurements and the state of the device; continually evaluating an accuracy of the magnetometer calibration model based the magnetometer measurements and the state of the device; and updating the magnetometer calibration model based on the evaluation of the accuracy magnetometer calibration model, the magnetometer measurements, and the state of the device.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Adam Howell, Hung A. Pham, Xiaoyuan Tu
  • Publication number: 20190035356
    Abstract: An electronic device may have components that experience performance variations as the device changes orientation relative to a user. Changes in the orientation of the device relative to the user can be monitored using a motion sensor. A camera may be used to periodically capture images of a user's eyes. By processing the images to produce accurate orientation information reflecting the position of the user's eyes relative to the device, the orientation of the device tracked by the motion sensor can be periodically updated. The components may include audio components such as microphones and speakers and may include a display with an array of pixels for displaying images. Control circuitry in the electronic device may modify pixel values for the pixels in the array to compensate for angle-of-view-dependent pixel appearance variations based on based on the orientation information from the motion sensor and the camera.
    Type: Application
    Filed: May 14, 2018
    Publication date: January 31, 2019
    Inventors: Jiaying Wu, Cheng Chen, Hung A. Pham, Lu Zhang, Paul V. Johnson, See-Ho Tsang, Steven P. Hotelling, Wesley S. Smith
  • Patent number: 10188965
    Abstract: The present invention relates generally to a method of reducing the level of at least one protein selected from the group consisting of plasminogen, tissue plasminogen activator and other protease(s) in a solution comprising at least one protein selected from the group consisting of fibrinogen, Factor VIII and von Willebrand factor (VWF), the method comprising: (i) passing a feedstock comprising at least one protein selected from the group consisting of fibrinogen, Factor VIII and VWF through a hydrophobic charge-induction chromatographic resin under conditions selected such that at least one protein selected from the group consisting of plasminogen, tissue plasminogen activator and other protease(s) present in the feedstock is bound to the resin; and (ii) recovering a solution comprising the at least one protein selected from the group consisting of fibrinogen, Factor VIII and VWF which passes through the resin, wherein the concentration of the at least one protein selected from the group consisting of plasm
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: January 29, 2019
    Assignee: CSL BEHRING GMBH
    Inventors: Hung Pham, Jeffrey Michael Hey, Darren Nguy
  • Patent number: 10154789
    Abstract: In one aspect, the present disclosure relates to a method including obtaining, by a heart rate sensor of a fitness tracking device, a heart rate measurement of a user of the fitness tracking device; obtaining, by at least one motion sensor, motion data of the user; analyzing, by the fitness tracking device, the motion data of the user to estimate a step rate of the user; estimating, by the fitness tracking device, a load associated with a physical activity of the user by comparing the heart rate measurement with the step rate of the user; and estimating, by the fitness tracking device, an energy expenditure rate of the user using the load and at least one of the heart rate measurement and the step rate.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 18, 2018
    Assignee: APPLE INC.
    Inventors: Karthik Jayaraman Raghuram, Hung A. Pham, Richard Channing Moore, III, Alexander Singh Alvarado, Umamahesh Srinivas, Xing Tan, Dan Marvin Trietsch, Gunes Dervisoglu, Craig H. Mermel, Ronald K. Huang, Adeeti Ullal
  • Publication number: 20180344217
    Abstract: A system and method for collecting motion data using a fitness tracking device located on an arm of a user, detecting that the arm is constrained based on the motion data, estimating a stride length of the user based on the motion data and historical step cadence-to-stride length data, calculating fitness data using the estimated stride length, and outputting the fitness data to the user.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 6, 2018
    Inventors: Daniel J. Perry, Edith M. Arnold, Hung A. Pham, Jonathan M. Beard, Karthik Jayaraman Raghuram, Vinay R. Majjigi
  • Publication number: 20180338033
    Abstract: Systems, methods, and computer-readable media for managing or classifying movement states of an electronic device are provided that may utilize communications circuitry data from one or more communications circuitries when determining a current or future movement state of an electronic device.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 22, 2018
    Inventors: Andre M. Boule, Andrew M. Wadycki, Bor-rong Chen, Emily C. Schubert, Srinivasan Nimmala, Sunny K. Chow, Gunes Dervisoglu, Venkateswara Rao Manepalli, Vijay Kumar Ramamurthi, Anh N. Phan, Maulik V. Choksi, John D. Blackwell, Xiao Xiao, Xiaoyuan Tu, Hung A. Pham, Richard B. Warren, Ronald K. Huang
  • Publication number: 20180334668
    Abstract: The present invention provides a triple-mode antibody display system that simultaneously matures, displays and secretes an antibody to a target of interest. An antibody in vivo-matured and complexed with membrane anchored bait can be expressed on the surface of the host cell, while complexed with a soluble bait the antibody is secreted from the host cell. Methods of using the system for identifying binders that bind specifically to an antigen of interest are also provided.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 22, 2018
    Inventors: Hiep Tran, Xiaole Chen, Hung Pham, Christine Mary Prokopowitz, Rolf Swoboda, Ian White
  • Publication number: 20180302881
    Abstract: An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Thayne M. Miller, Hung A. Pham, John B. Morrell, Brian T. Gleeson