Patents by Inventor I-Wen Wu

I-Wen Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135745
    Abstract: An electronic device has a narrow viewing angle state and a wide viewing angle state, and includes a panel and a light source providing a light passing through the panel. In the narrow viewing angle state, the light has a first relative light intensity and a second relative light intensity. The first relative light intensity is the strongest light intensity, the second relative light intensity is 50% of the strongest light intensity, the first relative light intensity corresponds to an angle of 0°, the second relative light intensity corresponds to a half-value angle, and the half-value angle is between ?15° and 15°. In the narrow angle state, a third relative light intensity at each angle between 20° and 60° or each angle between ?20° and ?60° is lower than 20% of the strongest light intensity.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Applicant: InnnoLux Corporation
    Inventors: Kuei-Sheng Chang, Po-Yang Chen, Kuo-Jung Wu, I-An Yao, Wei-Cheng Lee, Hsien-Wen Huang
  • Patent number: 11968817
    Abstract: A semiconductor device includes a fin structure. A source/drain region is formed on the fin structure. A first gate structure is disposed over the fin structure. A source/drain contact is disposed over the source/drain region. The source/drain contact has a protruding segment that protrudes at least partially over the first gate structure. The source/drain contact electrically couples together the source/drain region and the first gate structure.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Lin Chen, Chao-Yuan Chang, Ping-Wei Wang, Fu-Kai Yang, Ting Fang, I-Wen Wu, Shih-Hao Lin
  • Publication number: 20240096985
    Abstract: Methods and devices including an air gap adjacent a contact element extending to a source/drain feature of a device are described. Some embodiments of the method include depositing a dummy layer, which is subsequently removed to form the air gap. The dummy layer and subsequent air gap may be formed after a SAC dielectric layer such as silicon nitride is formed over an adjacent metal gate structure.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Publication number: 20240097035
    Abstract: Epitaxial source/drain structures for enhancing performance of multigate devices, such as fin-like field-effect transistors (FETs) or gate-all-around (GAA) FETs, and methods of fabricating the epitaxial source/drain structures, are disclosed herein. An exemplary device includes a dielectric substrate. The device further includes a channel layer, a gate disposed over the channel layer, and an epitaxial source/drain structure disposed adjacent to the channel layer. The channel layer, the gate, and the epitaxial source/drain structure are disposed over the dielectric substrate. The epitaxial source/drain structure includes an inner portion having a first dopant concentration and an outer portion having a second dopant concentration that is less than the first dopant concentration. The inner portion physically contacts the dielectric substrate, and the outer portion is disposed between the inner portion and the channel layer. In some embodiments, the outer portion physically contacts the dielectric substrate.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Chen-Ming Lee, I-Wen Wu, Po-Yu Huang, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11876135
    Abstract: Epitaxial source/drain structures for enhancing performance of multigate devices, such as fin-like field-effect transistors (FETs) or gate-all-around (GAA) FETs, and methods of fabricating the epitaxial source/drain structures, are disclosed herein. An exemplary device includes a dielectric substrate. The device further includes a channel layer, a gate disposed over the channel layer, and an epitaxial source/drain structure disposed adjacent to the channel layer. The channel layer, the gate, and the epitaxial source/drain structure are disposed over the dielectric substrate. The epitaxial source/drain structure includes an inner portion having a first dopant concentration and an outer portion having a second dopant concentration that is less than the first dopant concentration. The inner portion physically contacts the dielectric substrate, and the outer portion is disposed between the inner portion and the channel layer. In some embodiments, the outer portion physically contacts the dielectric substrate.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: January 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Ming Lee, I-Wen Wu, Po-Yu Huang, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11855161
    Abstract: Methods and devices including an air gap adjacent a contact element extending to a source/drain feature of a device are described. Some embodiments of the method include depositing a dummy layer, which is subsequently removed to form the air gap. The dummy layer and subsequent air gap may be formed after a SAC dielectric layer such as silicon nitride is formed over an adjacent metal gate structure.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230402531
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device according to one embodiment of the present disclosure includes a first fin-shaped structure extending lengthwise along a first direction over a substrate, a first epitaxial feature over a source/drain region of the first fin-shaped structure, a gate structure disposed over a channel region of the first fin-shaped structure and extending along a second direction perpendicular to the first direction, and a source/drain contact over the first epitaxial feature. The bottom surface of the gate structure is closer to the substrate than a bottom surface of the source/drain contact.
    Type: Application
    Filed: July 24, 2023
    Publication date: December 14, 2023
    Inventors: Jia-Heng Wang, Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11843028
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming B. Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20230387226
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure disposed over a channel region of an active region, a drain feature disposed over a drain region of the active region; a source feature disposed over a source region of the active region, a backside source contact disposed under the source feature, an isolation feature disposed on and in contact with the source feature, a drain contact disposed over and electrically coupled to the drain feature, and a gate contact via disposed over and electrically coupled to the gate structure. A distance between the gate contact via and the drain contact is greater than a distance between the gate contact via and the isolation feature. The exemplary semiconductor structure would have a reduced parasitic capacitance and an enlarged leakage window.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 30, 2023
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230377943
    Abstract: Semiconductor structures and methods are provided. An exemplary method according to the present disclosure includes providing a workpiece including a semiconductor fin protruding from a substrate, a first placeholder gate and a second placeholder gate over channel regions of the semiconductor fin, and a source/drain feature disposed between the channel regions. The method also includes removing a portion of the first placeholder gate and a portion of the substrate directly disposed thereunder to form an isolation trench, forming a dielectric feature in the isolation trench, replacing the second placeholder gate with a metal gate stack, selectively recessing the dielectric feature, forming a first capping layer over the metal gate stack and a second capping layer over the recessed dielectric feature, and forming a source/drain contact over and electrically coupled to the source/drain feature.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: I-Wen Wu, Po-Yu Huang, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230378270
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 23, 2023
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Publication number: 20230369418
    Abstract: A semiconductor structure and a method of forming the same are provided. An exemplary method of forming the semiconductor structure includes receiving a workpiece including a fin structure over a front side of a substrate, recessing a source region of the fin structure to form a source opening, extending the source opening into the substrate to form a plug opening, forming a semiconductor plug in the plug opening, planarizing the substrate to expose the semiconductor plug from a back side of the substrate, performing a first wet etching process to remove a portion of the substrate, performing a pre-amorphous implantation (PAI) process to amorphize a rest portion of the substrate, performing a second wet etching process to remove the amorphized rest portion of the substrate to form a dielectric opening, depositing a dielectric layer in the dielectric opening, and replacing the semiconductor plug with a backside source contact.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230352345
    Abstract: A method includes forming a fin protruding from a substrate, forming a gate structure across the fin, forming an epitaxial feature over the fin, depositing a dielectric layer covering the epitaxial feature and over sidewalls of the gate structure, performing an etching process to form a trench, the trench dividing the gate structure into first and second gate segments and extending into a region of the dielectric layer, forming a dielectric feature in the trench, recessing a portion of the dielectric feature located in the region, selectively etching the dielectric layer to expose the epitaxial feature, and depositing a conductive feature in physical contact with the epitaxial feature and directly above the portion of the dielectric feature.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 2, 2023
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chang-Yun Chang, Ching-Feng Fu, Peng Wang
  • Patent number: 11791387
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure disposed over a channel region of an active region, a drain feature disposed over a drain region of the active region; a source feature disposed over a source region of the active region, a backside source contact disposed under the source feature, an isolation feature disposed on and in contact with the source feature, a drain contact disposed over and electrically coupled to the drain feature, and a gate contact via disposed over and electrically coupled to the gate structure. A distance between the gate contact via and the drain contact is greater than a distance between the gate contact via and the isolation feature. The exemplary semiconductor structure would have a reduced parasitic capacitance and an enlarged leakage window.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11784222
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Patent number: 11777004
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a first inter-layer dielectric (ILD) layer formed over the fin structure. The FinFET device structure includes a gate structure formed in the first ILD layer, and a first S/D contact structure formed in the first ILD layer and adjacent to the gate structure. The FinFET device structure also includes a first air gap formed on a sidewall of the first S/D contact structure, and the first air gap is in direct contact with the first ILD layer.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, I-Wen Wu, Chen-Ming Lee, Jian-Hao Chen, Fu-Kai Yang, Feng-Cheng Yang, Mei-Yun Wang, Yen-Ming Chen
  • Patent number: 11757022
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device according to one embodiment of the present disclosure includes a first fin-shaped structure extending lengthwise along a first direction over a substrate, a first epitaxial feature over a source/drain region of the first fin-shaped structure, a gate structure disposed over a channel region of the first fin-shaped structure and extending along a second direction perpendicular to the first direction, and a source/drain contact over the first epitaxial feature. The bottom surface of the gate structure is closer to the substrate than a bottom surface of the source/drain contact.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Heng Wang, Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230282312
    Abstract: A construction method of ribosomal RNA database is provided, including the following steps: selecting a source of nucleic acid sequence database; performing normalization and homogenization on species classification rules; using AI technology for normalized classification and correction; selecting the kingdom to which the sequence species belongs; filtering out redundant sequences and sequences with inconsistent lengths; setting a threshold for unknown bases other than A, T, C or G, and excluding unknown bases that exceed the threshold; and excluding sequences with insufficient classification information.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 7, 2023
    Applicants: Acer Incorporated, Acer Medical Inc., Chang Gung Memorial Hospital, Keelung, National Health Research Institutes
    Inventors: Yun-Hsuan Chan, I-Wen Wu, Chieh Hua Lin, Yin-Hsong Hsu, Chi-Hsiao Yeh, Yu-Chieh Liao, Tsung-Hsien Tsai
  • Publication number: 20230268411
    Abstract: A semiconductor structure includes a substrate, nanostructures over the substrate, and a gate structure wrapping around the nanostructures. The gate structure includes a gate dielectric layer and a gate electrode wrapping around the gate dielectric layer. The semiconductor structure further includes a source/drain feature in contact with the nanostructures, a contact etch stop layer over the source/drain feature, and a seal layer over the air spacer and the gate structure, and on a sidewall of the contact etch stop layer. The contact etch stop layer is separated from the gate structure by an air spacer.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Publication number: 20230261068
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain region formed in a semiconductor substrate, a source/drain contact structure formed over the source/drain region, and a gate electrode layer formed adjacent to the source/drain contact structure. The semiconductor device structure also includes a first spacer and a second spacer laterally and successively arranged from the sidewall of the gate electrode layer to the sidewall of the source/drain contact structure. The semiconductor device structure further includes a silicide region formed in the source/drain region. The top width of the silicide region is greater than the bottom width of the source/drain contact structure and less than the top width of the source/drain region.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG