Patents by Inventor I-Wen Wu

I-Wen Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11222951
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Patent number: 11217492
    Abstract: A method includes providing a structure that includes a substrate, a first gate structure and a second gate structure over the substrate, and a first source/drain (S/D) feature and a second S/D feature over the substrate. The first S/D feature is adjacent to the first gate structure, the second S/D feature is adjacent to the second gate structure, the first S/D feature is configured for an n-type transistor, and the second S/D feature is configured for a p-type transistor. The method further includes introducing a p-type dopant into both the first and the second S/D features. After the introducing of the p-type dopant, the method further includes performing an etching process to the first and the second S/D features, wherein the etching process etches the first S/D feature faster than it etches the second S/D feature.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 4, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Patent number: 11145554
    Abstract: A semiconductor device includes an n-type FET device and a p-type FET device. The n-type FET device includes a first substrate region, a first gate stack, a first gate spacer over sidewalls of the first gate stack, and an n-type epitaxial feature in a source/drain (S/D) region of the n-type FET device. The p-type FET device includes a second substrate region, a second gate stack, a second gate spacer over sidewalls of the second gate stack, and a p-type epitaxial feature in an S/D region of the p-type FET device. A vertical distance between a bottom surface of the first gate spacer and a lowest point of an upper surface of the n-type epitaxial feature is greater than a vertical distance between a bottom surface of the second gate spacer and a lowest point of an upper surface of the p-type epitaxial feature.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Publication number: 20210273049
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming B. Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20210257483
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device according to one embodiment of the present disclosure includes a first fin-shaped structure extending lengthwise along a first direction over a substrate, a first epitaxial feature over a source/drain region of the first fin-shaped structure, a gate structure disposed over a channel region of the first fin-shaped structure and extending along a second direction perpendicular to the first direction, and a source/drain contact over the first epitaxial feature. The bottommost surface of the gate structure is closer to the substrate than a bottommost surface of the source/drain contact.
    Type: Application
    Filed: October 30, 2020
    Publication date: August 19, 2021
    Inventors: Jia-Heng Wang, Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20210183696
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20210175126
    Abstract: A semiconductor device includes a substrate, first and second fins protruding from the substrate, and first and second source/drain (S/D) features over the first and second fins respectively. The semiconductor device further includes an isolation feature over the substrate and disposed between the first and second S/D features, and a dielectric layer disposed on sidewalls of the first and second S/D features and on sidewalls of the isolation feature. A top portion of the isolation feature extends above the dielectric layer.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chang-Yun Chang, Ching-Feng Fu, Peng Wang
  • Publication number: 20210134955
    Abstract: A semiconductor structure includes semiconductor fins disposed over a substrate, an epitaxial source/drain (S/D) feature disposed over the semiconductor fins, where a top surface portion of the epitaxial S/D feature includes two surfaces slanted downward toward each other at an angle, a silicide layer disposed conformally over the top portion of the epitaxial S/D feature, and an S/D contact disposed over the silicide layer, where a bottom portion of the S/D contact extends into the epitaxial S/D feature.
    Type: Application
    Filed: December 14, 2020
    Publication date: May 6, 2021
    Inventors: Jia-Heng Wang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20210098468
    Abstract: A semiconductor device includes a fin structure. A source/drain region is formed on the fin structure. A first gate structure is disposed over the fin structure. A source/drain contact is disposed over the source/drain region. The source/drain contact has a protruding segment that protrudes at least partially over the first gate structure. The source/drain contact electrically couples together the source/drain region and the first gate structure.
    Type: Application
    Filed: January 29, 2020
    Publication date: April 1, 2021
    Inventors: Jui-Lin Chen, Chao-Yuan Chang, Ping-Wei Wang, Fu-Kai Yang, Ting Fang, I-Wen Wu, Shih-Hao Lin
  • Patent number: 10943818
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Patent number: 10930564
    Abstract: A method includes providing a structure having first and second fins over a substrate and oriented lengthwise generally along a first direction and source/drain (S/D) features over the first and second fins; forming an interlayer dielectric (ILD) layer covering the S/D features; performing a first etching process at least to an area between the S/D features, thereby forming a trench in the ILD layer; depositing a dielectric material in the trench; performing a second etching process to selectively recess the dielectric material; and performing a third etching process to selectively recess the ILD layer, thereby forming a contact hole that exposes the S/D features.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: February 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chang-Yun Chang, Ching-Feng Fu, Peng Wang
  • Patent number: 10868118
    Abstract: A method includes forming an epitaxial source/drain (S/D) feature over a semiconductor layer, where the epitaxial S/D feature includes silicon (Si) and germanium (Ge), forming a trench to expose a portion of the epitaxial S/D feature, annealing the exposed portion of the epitaxial S/D feature, where the annealing forms at a top surface of the epitaxial S/D feature a first region having a first Ge concentration and a second region disposed below the first region having a second Ge concentration that is less than the first Ge concentration, oxidizing the first region, removing the oxidized first region, and forming an S/D contact in the trench over the second region.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Heng Wang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 10790197
    Abstract: A semiconductor arrangement and method of forming the same are described. A semiconductor arrangement includes a third metal connect in contact with a first metal connect in a first active region and a second metal connect in a second active region, and over a shallow trench isolation region located between the first active region and a second active region. A method of forming the semiconductor arrangement includes forming a first opening over the first metal connect, the STI region, and the second metal connect, and forming the third metal connect in the first opening. Forming the third metal connect over the first metal connect and the second metal connect mitigates RC coupling.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: I-Wen Wu, Hsien-Cheng Wang, Mei-Yun Wang, Shih-Wen Liu, Chao-Hsun Wang, Yun Lee
  • Publication number: 20200135550
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: June 3, 2019
    Publication date: April 30, 2020
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20200118884
    Abstract: A semiconductor arrangement and method of forming the same are described. A semiconductor arrangement includes a third metal connect in contact with a first metal connect in a first active region and a second metal connect in a second active region, and over a shallow trench isolation region located between the first active region and a second active region. A method of forming the semiconductor arrangement includes forming a first opening over the first metal connect, the STI region, and the second metal connect, and forming the third metal connect in the first opening. Forming the third metal connect over the first metal connect and the second metal connect mitigates RC coupling.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: I-Wen WU, Hsien-Cheng WANG, Mei-Yun WANG, Shih-Wen LIU, Chao-Hsun WANG, Yun LEE
  • Publication number: 20200111867
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. The present disclosure provides a semiconductor device that includes a first fin structure and a second fin structure each extending from a substrate; a first gate segment over the first fin structure and a second gate segment over the second fin structure; a first isolation feature separating the first and second gate segments; a first source/drain (S/D) feature over the first fin structure and adjacent to the first gate segment; a second S/D feature over the second fin structure and adjacent to the second gate segment; and a second isolation feature also disposed in the trench. The first and second S/D features are separated by the second isolation feature, and a composition of the second isolation feature is different from a composition of the first isolation feature.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: I-Wen Wu, Fu-Kai Yang, Chen-Ming B. Lee, Mei-Yun Wang, Jr-Hung Li, Bo-Cyuan Lu
  • Publication number: 20200083119
    Abstract: A method includes providing a structure that includes a substrate, a first gate structure and a second gate structure over the substrate, and a first source/drain (S/D) feature and a second S/D feature over the substrate. The first S/D feature is adjacent to the first gate structure, the second S/D feature is adjacent to the second gate structure, the first S/D feature is configured for an n-type transistor, and the second S/D feature is configured for a p-type transistor. The method further includes introducing a p-type dopant into both the first and the second S/D features. After the introducing of the p-type dopant, the method further includes performing an etching process to the first and the second S/D features, wherein the etching process etches the first S/D feature faster than it etches the second S/D feature.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Publication number: 20200083118
    Abstract: A semiconductor device includes an n-type FET device and a p-type FET device. The n-type FET device includes a first substrate region, a first gate stack, a first gate spacer over sidewalls of the first gate stack, and an n-type epitaxial feature in a source/drain (S/D) region of the n-type FET device. The p-type FET device includes a second substrate region, a second gate stack, a second gate spacer over sidewalls of the second gate stack, and a p-type epitaxial feature in an S/D region of the p-type FET device. A vertical distance between a bottom surface of the first gate spacer and a lowest point of an upper surface of the n-type epitaxial feature is greater than a vertical distance between a bottom surface of the second gate spacer and a lowest point of an upper surface of the p-type epitaxial feature.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Shao-Ming Koh, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Jia-Heng Wang, Mei-Yun Wang
  • Publication number: 20200075725
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Publication number: 20200075724
    Abstract: A method includes forming an epitaxial source/drain (S/D) feature over a semiconductor layer, where the epitaxial S/D feature includes silicon (Si) and germanium (Ge), forming a trench to expose a portion of the epitaxial S/D feature, annealing the exposed portion of the epitaxial S/D feature, where the annealing forms at a top surface of the epitaxial S/D feature a first region having a first Ge concentration and a second region disposed below the first region having a second Ge concentration that is less than the first Ge concentration, oxidizing the first region, removing the oxidized first region, and forming an S/D contact in the trench over the second region.
    Type: Application
    Filed: May 10, 2019
    Publication date: March 5, 2020
    Inventors: Jia-Heng Wang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang