Patents by Inventor I-Wen Wu

I-Wen Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11757022
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device according to one embodiment of the present disclosure includes a first fin-shaped structure extending lengthwise along a first direction over a substrate, a first epitaxial feature over a source/drain region of the first fin-shaped structure, a gate structure disposed over a channel region of the first fin-shaped structure and extending along a second direction perpendicular to the first direction, and a source/drain contact over the first epitaxial feature. The bottom surface of the gate structure is closer to the substrate than a bottom surface of the source/drain contact.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Heng Wang, Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230282312
    Abstract: A construction method of ribosomal RNA database is provided, including the following steps: selecting a source of nucleic acid sequence database; performing normalization and homogenization on species classification rules; using AI technology for normalized classification and correction; selecting the kingdom to which the sequence species belongs; filtering out redundant sequences and sequences with inconsistent lengths; setting a threshold for unknown bases other than A, T, C or G, and excluding unknown bases that exceed the threshold; and excluding sequences with insufficient classification information.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 7, 2023
    Applicants: Acer Incorporated, Acer Medical Inc., Chang Gung Memorial Hospital, Keelung, National Health Research Institutes
    Inventors: Yun-Hsuan Chan, I-Wen Wu, Chieh Hua Lin, Yin-Hsong Hsu, Chi-Hsiao Yeh, Yu-Chieh Liao, Tsung-Hsien Tsai
  • Publication number: 20230268411
    Abstract: A semiconductor structure includes a substrate, nanostructures over the substrate, and a gate structure wrapping around the nanostructures. The gate structure includes a gate dielectric layer and a gate electrode wrapping around the gate dielectric layer. The semiconductor structure further includes a source/drain feature in contact with the nanostructures, a contact etch stop layer over the source/drain feature, and a seal layer over the air spacer and the gate structure, and on a sidewall of the contact etch stop layer. The contact etch stop layer is separated from the gate structure by an air spacer.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Publication number: 20230261068
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain region formed in a semiconductor substrate, a source/drain contact structure formed over the source/drain region, and a gate electrode layer formed adjacent to the source/drain contact structure. The semiconductor device structure also includes a first spacer and a second spacer laterally and successively arranged from the sidewall of the gate electrode layer to the sidewall of the source/drain contact structure. The semiconductor device structure further includes a silicide region formed in the source/drain region. The top width of the silicide region is greater than the bottom width of the source/drain contact structure and less than the top width of the source/drain region.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Patent number: 11728394
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary method of forming the semiconductor structure includes forming a fin structure extending from a front side of a substrate, recessing a source region of the fin structure to form a source opening, forming a semiconductor plug under the source opening, planarizing the substrate to expose the semiconductor plug from a back side of the substrate, performing a pre-amorphous implantation (PAI) process to amorphize the substrate, replacing the amorphized substrate with a dielectric layer, and replacing the semiconductor plug with a backside source contact. By performing the PAI process, crystalline semiconductor is amorphized and may be substantially removed. Thus, the performance and reliability of the semiconductor structure may be advantageously improved.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230238284
    Abstract: A semiconductor device and a method of forming the same are provided. In an embodiment, an exemplary semiconductor device includes two stacks of channel members; a source/drain feature extending between the two stacks of channel members along a direction; a source/drain contact disposed under and electrically coupled to the source/drain feature; two gate structures over and interleaved with the two stacks of channel members; a low-k spacer horizontally surrounding the source/drain contact; and a dielectric layer horizontally surrounding the low-k spacer.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 27, 2023
    Inventors: Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11694931
    Abstract: A semiconductor device includes a substrate, first and second fins protruding from the substrate, and first and second source/drain (S/D) features over the first and second fins respectively. The semiconductor device further includes an isolation feature over the substrate and disposed between the first and second S/D features, and a dielectric layer disposed on sidewalls of the first and second S/D features and on sidewalls of the isolation feature. A top portion of the isolation feature extends above the dielectric layer.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chang-Yun Chang, Ching-Feng Fu, Peng Wang
  • Patent number: 11615987
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary method includes forming a fin-shaped structure extending from a front side of a substrate, recessing a source region of the fin-shaped structure to form a source opening, forming a semiconductor plug under the source opening, exposing the semiconductor plug from a back side of the substrate, selectively removing a first portion of the substrate without removing a second portion of the substrate adjacent to the semiconductor plug, forming a backside dielectric layer over a bottom surface of the workpiece, replacing the semiconductor plug with a backside contact, and selectively removing the second portion of the substrate to form a gap between the backside dielectric layer and the backside contact. By forming the gap, a parasitic capacitance between the backside contact and an adjacent gate structure may be advantageously reduced.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230048829
    Abstract: Semiconductor structures and methods are provided. An exemplary method according to the present disclosure includes receiving a fin-shaped structure comprising a first channel region and a second channel region, a first and a second dummy gate structures disposed over the first and the second channel regions, respectively. The method also includes removing a portion of the first dummy gate structure, a portion of the first channel region and a portion of the substrate under the first dummy gate structure to form a trench, forming a hybrid dielectric feature in the trench, removing a portion of the hybrid dielectric feature to form an air gap, sealing the air gap, and replacing the second dummy gate structure with a gate stack after sealing the air gap.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20230034125
    Abstract: Methods and devices including an air gap adjacent a contact element extending to a source/drain feature of a device are described. Some embodiments of the method include depositing a dummy layer, which is subsequently removed to form the air gap. The dummy layer and subsequent air gap may be formed after a SAC dielectric layer such as silicon nitride is formed over an adjacent metal gate structure.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Patent number: 11532507
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Publication number: 20220367623
    Abstract: A semiconductor device structure includes nanostructures formed over a substrate. The structure also includes a gate structure formed over and around the nanostructures. The structure also includes a spacer layer formed over a sidewall of the gate structure over the nanostructures. The structure also includes a source/drain epitaxial structure formed adjacent to the spacer layer. The structure also includes a contact structure formed over the source/drain epitaxial structure with an air spacer formed between the spacer layer and the contact structure.
    Type: Application
    Filed: November 19, 2021
    Publication date: November 17, 2022
    Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220359683
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a first inter-layer dielectric (ILD) layer formed over the fin structure. The FinFET device structure includes a gate structure formed in the first ILD layer, and a first S/D contact structure formed in the first ILD layer and adjacent to the gate structure. The FinFET device structure also includes a first air gap formed on a sidewall of the first S/D contact structure, and the first air gap is in direct contact with the first ILD layer.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan LEE, I-Wen WU, Chen-Ming LEE, Jian-Hao CHEN, Fu-Kai YANG, Feng-Cheng YANG, Mei-Yun WANG, Yen-Ming CHEN
  • Publication number: 20220352326
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure disposed over a channel region of an active region, a drain feature disposed over a drain region of the active region; a source feature disposed over a source region of the active region, a backside source contact disposed under the source feature, an isolation feature disposed on and in contact with the source feature, a drain contact disposed over and electrically coupled to the drain feature, and a gate contact via disposed over and electrically coupled to the gate structure. A distance between the gate contact via and the drain contact is greater than a distance between the gate contact via and the isolation feature. The exemplary semiconductor structure would have a reduced parasitic capacitance and an enlarged leakage window.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220352328
    Abstract: An interconnect fabrication method is disclosed herein that utilizes a disposable etch stop hard mask over a gate structure during source/drain contact formation and replaces the disposable etch stop hard mask with a dielectric feature (in some embodiments, dielectric layers having a lower dielectric constant than a dielectric constant of dielectric layers of the disposable etch stop hard mask) before gate contact formation. An exemplary device includes a contact etch stop layer (CESL) having a first sidewall CESL portion and a second sidewall CESL portion separated by a spacing and a dielectric feature disposed over a gate structure, where the dielectric feature and the gate structure fill the spacing between the first sidewall CESL portion and the second sidewall CESL portion. The dielectric feature includes a bulk dielectric over a dielectric liner. The dielectric liner separates the bulk dielectric from the gate structure and the CESL.
    Type: Application
    Filed: December 9, 2021
    Publication date: November 3, 2022
    Inventors: Shih-Che Lin, Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Chia-Hsien Yao, Chao-Hsun Wang, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220310455
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary method includes forming a fin-shaped structure extending from a front side of a substrate, recessing a source region of the fin-shaped structure to form a source opening, forming a semiconductor plug under the source opening, exposing the semiconductor plug from a back side of the substrate, selectively removing a first portion of the substrate without removing a second portion of the substrate adjacent to the semiconductor plug, forming a backside dielectric layer over a bottom surface of the workpiece, replacing the semiconductor plug with a backside contact, and selectively removing the second portion of the substrate to form a gap between the backside dielectric layer and the backside contact. By forming the gap, a parasitic capacitance between the backside contact and an adjacent gate structure may be advantageously reduced.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220238713
    Abstract: Epitaxial source/drain structures for enhancing performance of multigate devices, such as fin-like field-effect transistors (FETs) or gate-all-around (GAA) FETs, and methods of fabricating the epitaxial source/drain structures, are disclosed herein. An exemplary device includes a dielectric substrate. The device further includes a channel layer, a gate disposed over the channel layer, and an epitaxial source/drain structure disposed adjacent to the channel layer. The channel layer, the gate, and the epitaxial source/drain structure are disposed over the dielectric substrate. The epitaxial source/drain structure includes an inner portion having a first dopant concentration and an outer portion having a second dopant concentration that is less than the first dopant concentration. The inner portion physically contacts the dielectric substrate, and the outer portion is disposed between the inner portion and the channel layer. In some embodiments, the outer portion physically contacts the dielectric substrate.
    Type: Application
    Filed: July 23, 2021
    Publication date: July 28, 2022
    Inventors: Chen-Ming Lee, I-Wen Wu, Po-Yu Huang, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220238702
    Abstract: The present disclosure provides semiconductor devices and methods of forming the same. A semiconductor device according to one embodiment of the present disclosure includes a first fin-shaped structure extending lengthwise along a first direction over a substrate, a first epitaxial feature over a source/drain region of the first fin-shaped structure, a gate structure disposed over a channel region of the first fin-shaped structure and extending along a second direction perpendicular to the first direction, and a source/drain contact over the first epitaxial feature. The bottom surface of the gate structure is closer to the substrate than a bottom surface of the source/drain contact.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Jia-Heng Wang, Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220238660
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary method of forming the semiconductor structure includes forming a fin structure extending from a front side of a substrate, recessing a source region of the fin structure to form a source opening, forming a semiconductor plug under the source opening, planarizing the substrate to expose the semiconductor plug from a back side of the substrate, performing a pre-amorphous implantation (PAI) process to amorphize the substrate, replacing the amorphized substrate with a dielectric layer, and replacing the semiconductor plug with a backside source contact. By performing the PAI process, crystalline semiconductor is amorphized and may be substantially removed. Thus, the performance and reliability of the semiconductor structure may be advantageously improved.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 28, 2022
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20220181332
    Abstract: A semiconductor device includes a fin structure. A source/drain region is formed on the fin structure. A first gate structure is disposed over the fin structure. A source/drain contact is disposed over the source/drain region. The source/drain contact has a protruding segment that protrudes at least partially over the first gate structure. The source/drain contact electrically couples together the source/drain region and the first gate structure.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Inventors: Jui-Lin Chen, Chao-Yuan Chang, Ping-Wei Wang, Fu-Kai Yang, Ting Fang, I-Wen Wu, Shih-Hao Lin