Patents by Inventor Ian A. Young

Ian A. Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12349442
    Abstract: Thin film transistors having semiconductor structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is above the 2D material layer, the gate stack having a first side opposite a second side. A semiconductor structure including germanium is included, the semiconductor structure laterally adjacent to and in contact with the 2D material layer adjacent the first side of the gate stack. A first conductive structure is adjacent the first side of the second gate stack, the first conductive structure over and in direct electrical contact with the semiconductor structure. The semiconductor structure is intervening between the first conductive structure and the 2D material layer. A second conductive structure is adjacent the second side of the second gate stack, the second conductive structure over and in direct electrical contact with the 2D material layer.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: July 1, 2025
    Assignee: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Uygar E. Avci, Chelsey Dorow, Tanay Gosavi, Chia-Ching Lin, Carl Naylor, Nazila Haratipour, Kevin P. O'Brien, Seung Hoon Sung, Ian A. Young, Urusa Alaan
  • Patent number: 12224309
    Abstract: Disclosed herein are capacitors including built-in electric fields, as well as related devices and assemblies. In some embodiments, a capacitor may include a top electrode region, a bottom electrode region, and a dielectric region between and in contact with the top electrode region and the bottom electrode region, wherein the dielectric region includes a perovskite material, and the top electrode region has a different material structure than the bottom electrode region.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: February 11, 2025
    Assignee: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Kaan Oguz, I-Cheng Tung, Uygar E. Avci, Matthew V. Metz, Ashish Verma Penumatcha, Ian A. Young, Arnab Sen Gupta
  • Publication number: 20250006434
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
    Type: Application
    Filed: September 12, 2024
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Patent number: 12056596
    Abstract: Disclosed herein are staged oscillators for neural computing, as well as related methods and assemblies. In some embodiments, neural computing circuitry may include a first oscillator set, a second oscillator set, and an averaging structure coupled between the first oscillator set and the second oscillator set.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: August 6, 2024
    Assignee: Intel Corporation
    Inventors: Dmitri E. Nikonov, Hai Li, Ian A. Young
  • Patent number: 12052873
    Abstract: Disclosed herein are neural computing dies with stacked neural core regions as well as related methods and assemblies. In some embodiments, a neural computing die may include: a first neural core region; a second neural core region; and an inter-core interconnect region in a volume between the first neural core region and the second neural core region, wherein the inter-core interconnect region includes a conductive pathway between the first neural core region and the second neural core region, and the conductive pathway includes a conductive via.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: July 30, 2024
    Assignee: Intel Corporation
    Inventors: Dmitri E. Nikonov, Clifford Lu Ong, Ian A. Young
  • Patent number: 12009018
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetic insulating material (MI such as EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene), wherein the magnetic insulating material has a first magnetization; a magnet with a second magnetization, wherein the magnet is adjacent to the TMD of the stack; and an interconnect comprising a spin orbit material, wherein the interconnect is adjacent to the magnet.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: June 11, 2024
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Patent number: 12001941
    Abstract: Embodiments may relate to a system to be used in an oscillating neural network (ONN). The system may include a control node and a plurality of nodes wirelessly communicatively coupled with a control node. A node of the plurality of nodes may be configured to identify an oscillation frequency of the node based on a weight W and an input X. The node may further be configured to transmit a wireless signal to the control node, wherein a frequency of the wireless signal oscillates based on the identified oscillation frequency. Other embodiments may be described or claimed.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: June 4, 2024
    Assignee: Intel Corporation
    Inventors: Dmitri E. Nikonov, Sasikanth Manipatruni, Ian A. Young
  • Patent number: 11990899
    Abstract: Described is an apparatus which comprises: a 4-state input magnet; a first spin channel region adjacent to the 4-state input magnet; a 4-state output magnet; a second spin channel region adjacent to the 4-state input and output magnets; and a third spin channel region adjacent to the 4-state output magnet. Described in an apparatus which comprises: a 4-state input magnet; a first filter layer adjacent to the 4-state input magnet; a first spin channel region adjacent to the first filter layer; a 4-state output magnet; a second filter layer adjacent to the 4-state output magnet; a second spin channel region adjacent to the first and second filter layers; and a third spin channel region adjacent to the second filter layer.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: May 21, 2024
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Ian A. Young, Dmitri E. Nikonov, Uygar E. Avci, Patrick Morrow, Anurag Chaudhry
  • Patent number: 11980037
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: May 7, 2024
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung
  • Patent number: 11901400
    Abstract: A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Owen Loh, Mengcheng Lu, Seung Hoon Sung, Ian A. Young, Uygar Avci, Jack T. Kavalieros
  • Patent number: 11900979
    Abstract: Embodiments of the present disclosure are directed toward probabilistic in-memory computing configurations and arrangements, and configurations of probabilistic bit devices (p-bits) for probabilistic in-memory computing. concept with emerging. A probabilistic in-memory computing device includes an array of p-bits, where each p-bit is disposed at or near horizontal and vertical wires. Each p-bit is a time-varying resistor that has a time-varying resistance, which follows a desired probability distribution. The time-varying resistance of each p-bit represents a weight in a weight matrix of a stochastic neural network. During operation, an input voltage is applied to the horizontal wires to control the current through each p-bit. The currents are accumulated in the vertical wires thereby performing respective multiply-and-accumulative (MAC) operations. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Hai Li, Dmitri E. Nikonov, Punyashloka Debashis, Ian A. Young, Mahesh Subedar, Omesh Tickoo
  • Publication number: 20230411443
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode. An insulator is over the first electrode. The insulator includes a first layer, and a second layer over the first layer. The first layer has a leakage current that is less than a leakage current of the second layer. The second layer has a dielectric constant that is greater than a dielectric constant of the first layer. A second electrode is over the insulator.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Kaan OGUZ, Chia-Ching LIN, Arnab SEN GUPTA, I-Cheng TUNG, Sou-Chi CHANG, Sudarat LEE, Matthew V. METZ, Uygar E. AVCI, Scott B. CLENDENNING, Ian A. YOUNG
  • Patent number: 11799029
    Abstract: Described is an apparatus which comprises: a first layer comprising a semiconductor; a second layer comprising an insulating material, the second layer adjacent to the first layer; a third layer comprising a high-k insulating material, the third layer adjacent to the second layer; a fourth layer comprising a ferroelectric material, the fourth layer adjacent to the third layer; and a fifth layer comprising a high-k insulating material, the fifth layer adjacent to the fourth layer.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Uygar E. Avci, Joshua M. Howard, Seiyon Kim, Ian A. Young
  • Patent number: 11769789
    Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Owen Loh, Mengcheng Lu, Seung Hoon Sung, Ian A. Young, Uygar Avci, Jack T. Kavalieros
  • Patent number: 11751404
    Abstract: Embodiments herein describe techniques for a semiconductor device including a RRAM memory cell. The RRAM memory cell includes a FinFET transistor and a RRAM storage cell. The FinFET transistor includes a fin structure on a substrate, where the fin structure includes a channel region, a source region, and a drain region. An epitaxial layer is around the source region or the drain region. A RRAM storage stack is wrapped around a surface of the epitaxial layer. The RRAM storage stack includes a resistive switching material layer in contact and wrapped around the surface of the epitaxial layer, and a contact electrode in contact and wrapped around a surface of the resistive switching material layer. The epitaxial layer, the resistive switching material layer, and the contact electrode form a RRAM storage cell. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Gregory Chen, Phil Knag, Ram Krishnamurthy, Raghavan Kumar, Sasikanth Manipatruni, Amrita Mathuriya, Huseyin Sumbul, Ian A. Young
  • Patent number: 11742407
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Ashish Verma Penumatcha, Sou-Chi Chang, Devin Merrill, I-Cheng Tung, Nazila Haratipour, Jack T. Kavalieros, Ian A. Young, Matthew V. Metz, Uygar E. Avci, Chia-Ching Lin, Owen Loh, Shriram Shivaraman, Eric Charles Mattson
  • Patent number: 11735652
    Abstract: Field effect transistors having a ferroelectric or antiferroelectric gate dielectric structure are described. In an example, an integrated circuit structure includes a semiconductor channel structure includes a monocrystalline material. A gate dielectric is over the semiconductor channel structure. The gate dielectric includes a ferroelectric or antiferroelectric polycrystalline material layer. A gate electrode has a conductive layer on the ferroelectric or antiferroelectric polycrystalline material layer, the conductive layer including a metal. A first source or drain structure is at a first side of the gate electrode. A second source or drain structure is at a second side of the gate electrode opposite the first side.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Uygar E. Avci, Joshua M. Howard, Ian A. Young, Daniel H. Morris
  • Patent number: 11734174
    Abstract: Described is an low overhead method and apparatus to reconfigure a pair of buffered interconnect links to operate in one of these three modes—first mode (e.g., bandwidth mode), second mode (e.g., latency mode), and third mode (e.g., energy mode). In bandwidth mode, each link in the pair buffered interconnect links carries a unique signal from source to destination. In latency mode, both links in the pair carry the same signal from source to destination, where one link in the pair is “primary” and other is called the “assist”. Temporal alignment of transitions in this pair of buffered interconnects reduces the effective capacitance of primary, thereby reducing delay or latency. In energy mode, one link in the pair, the primary, alone carries a signal, while the other link in the pair is idle. An idle neighbor on one side reduces energy consumption of the primary.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Tanay Karnik, Tejpal Singh, Yen-Cheng Liu, Lavanya Subramanian, Mahesh Kumashikar, Sri Harsha Choday, Sreenivas Subramoney, Kaushik Vaidyanathan, Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 11727260
    Abstract: An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Jack T. Kavalieros, Ian A. Young, Ram Krishnamurthy, Sasikanth Manipatruni, Uygar Avci, Gregory K. Chen, Amrita Mathuriya, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul, Nazila Haratipour, Van H. Le
  • Publication number: 20230253444
    Abstract: Described herein are capacitor devices formed using perovskite insulators. In one example, a perovskite templating material is formed over an electrode, and a perovskite insulator layer is grown over the templating material. The templating material improves the crystal structure and electrical properties in the perovskite insulator layer. One or both electrodes may be ruthenium. In another example, a perovskite insulator layer is formed between two layers of indium tin oxide (ITO), with the ITO layers forming the capacitor electrodes.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 10, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Kaan Oguz, Chia-Ching Lin, I-Cheng Tung, Sudarat Lee, Sou-Chi Chang, Matthew V. Metz, Scott B. Clendenning, Uygar E. Avci, Ian A. Young, Jason C. Retasket, Edward O. Johnson, JR.