Patents by Inventor Ian D. Melville

Ian D. Melville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110079907
    Abstract: Disclosed is a semiconductor device wherein an insulation layer has a copper plug in contact with the last wiring layer of the device. There may also be a barrier layer separating the copper plug from the insulation layer. In a further embodiment, there may also be an aluminum layer between the insulation layer and copper plug. Also disclosed is a process for making the semiconductor device.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MUKTA G. FAROOQ, Emily R. Kinser, Ian D. Melville, Krystyna W. Semkow
  • Patent number: 7919356
    Abstract: A method of assembling a microelectronic flip-chip arrangement includes attaching a chip having a defined length to a supporting substrate, wherein the chip forms a chip shadow line of the defined length on the supporting substrate, creating a first non-wettable zone on an outer portion of the bottom surface of the chip, creating a second non-wettable zone on a portion of the supporting substrate outside the chip shadow line, underfilling the chip and forming a fillet, wherein the fillet does not extend beyond the chip shadow line, and hardening the underfill including the fillet.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Dae-Young Jung, Ian D. Melville
  • Patent number: 7875502
    Abstract: A chip fabrication method. A provided structure includes: a transistor on a semiconductor substrate, N interconnect layers on the semiconductor substrate and the transistor (N>0), and a first dielectric layer on the N interconnect layers. The transistor is electrically coupled to the N interconnect layers. P crack stop regions and Q crack stop regions are formed on the first dielectric layer (P, Q>0). The first dielectric layer is sandwiched between the N interconnect layers and a second dielectric layer that is formed on the first dielectric layer. Each P crack stop region is completely surrounded by the first and second dielectric layers. The second dielectric layer is sandwiched between the first dielectric layer and an underfill layer that is formed on the second dielectric layer. Each Q crack stop region is completely surrounded by the first dielectric layer and the underfill layer.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Brofman, Jon Alfred Casey, Ian D. Melville, David L. Questad, Wolfgang Sauter, Thomas Anthony Wassick
  • Patent number: 7867887
    Abstract: The present invention provides bond pads structures between semiconductor integrated circuits and the chip package with enhanced resistance to fracture and improved reliability. Mismatch in the coefficient of temperature expansion (CTE) among the materials used in bond structures induces stress and shear on them that may result in fractures within the back end dielectric stacks and cause reliability problems of the packaging. By placing multiple metal pads which are connected to the bond pad through multiple metal via, the adhesion between the bond pads and the back end dielectric stacks is enhanced.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ian D. Melville, Mukta G. Farooq, Dae Young Jung
  • Patent number: 7816248
    Abstract: Disclosed are embodiments of a far back end of the line solder connector and a method of forming the connector that eliminates the use aluminum, protects the integrity of the ball limiting metallurgy (BLM) layers and promotes adhesion of the BLM layers by incorporating a thin conformal conductive liner into the solder connector structure. This conductive liner coats the top of the via filling in any divots in order to create a uniform surface for BLM deposition and to, thereby, protect the integrity of the BLM layers. The liner further coats the dielectric sidewalls of the well in which the BLM layers are formed in order to enhance adhesion of the BLM layers to the well.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Lacrtis Economikos, Ian D. Melville, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20100233872
    Abstract: A chip fabrication method. A provided structure includes: a transistor on a semiconductor substrate, N interconnect layers on the semiconductor substrate and the transistor (N>0), and a first dielectric layer on the N interconnect layers. The transistor is electrically coupled to the N interconnect layers. P crack stop regions and Q crack stop regions are formed on the first dielectric layer (P, Q>0). The first dielectric layer is sandwiched between the N interconnect layers and a second dielectric layer that is formed on the first dielectric layer. Each P crack stop region is completely surrounded by the first and second dielectric layers. The second dielectric layer is sandwiched between the first dielectric layer and an underfill layer that is formed on the second dielectric layer. Each Q crack stop region is completely surrounded by the first dielectric layer and the underfill layer.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peter J. Brofman, Jon Alfred Casey, Ian D. Melville, David L. Questad, Wolfgang Sauter, Thomas Anthony Wassick
  • Patent number: 7732932
    Abstract: Structures and a method for forming the same. The structure includes a semiconductor substrate, a transistor on the semiconductor substrate, and N interconnect layers on top of the semiconductor substrate, N being a positive integer. The transistor is electrically coupled to the N interconnect layers. The structure further includes a first dielectric layer on top of the N interconnect layers and P crack stop regions on top of the first dielectric layer, P being a positive integer. The structure further includes a second dielectric layer on top of the first dielectric layer. Each crack stop region of the P crack stop regions is completely surrounded by the first dielectric layer and the second dielectric layer. The structure further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Brofman, Jon Alfred Casey, Ian D. Melville, David L. Questad, Wolfgang Sauter, Thomas Anthony Wassick
  • Publication number: 20100019354
    Abstract: The invention is directed to an improved semiconductor chip that reduces crack initiation and propagation into the active area of a semiconductor chip. A semiconductor wafer includes dicing channels that separate semiconductor chips and holes through a portion of a semiconductor chip, which are located at the intersection of the dicing channels. Once diced from the semiconductor wafer, semiconductor chips are created without ninety degree angle corners.
    Type: Application
    Filed: October 5, 2009
    Publication date: January 28, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Dae-Young Jung, Ian D. Melville
  • Patent number: 7648891
    Abstract: The invention is directed to an improved semiconductor chip that reduces crack initiation and propagation into the active area of a semiconductor chip. A semiconductor wafer includes dicing channels that separate semiconductor chips and holes through a portion of a semiconductor chip, which are located at the intersection of the dicing channels. Once diced from the semiconductor wafer, semiconductor chips are created without ninety degree angle corners.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: January 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Dae-Young Jung, Ian D. Melville
  • Patent number: 7622737
    Abstract: Test structures for electrically detecting BEOL failures are provided. In an embodiment, the structure comprises: an input/output connection disposed above a primary conductive pad which is embedded in an insulator; a dielectric layer disposed upon the insulator; a primary via extending through the dielectric layer down to the primary conductive pad for providing electrical connection between the input/output connection and the primary conductive pad; and a secondary via filled with a conductive material in electrical connection with the input/output connection, the secondary via extending through the dielectric layer down to a secondary interconnect in electrical connection with a secondary conductive pad that is insulated from the primary conductive pad.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Xiao H. Liu, Ian D. Melville
  • Publication number: 20090243098
    Abstract: A first metallic diffusion barrier layer is formed on a last level metal plate exposed in an opening of a passivation layer. Optionally, a metallic adhesion promotion layer is formed on the first metallic diffusion barrier layer. An elemental metal conductive layer is formed on the metallic adhesion promotion layer, which provides a highly conductive structure that distributes current uniformly due to the higher electrical conductivity of the material than the layers above or below. A stack of the second metallic diffusion barrier layer and a wetting promotion layer is formed, on which a C4 ball is bonded. The elemental metal conductive layer distributes the current uniformly within the underbump metallurgy structure, which induces a more uniform current distribution in the C4 ball and enhanced electromigration resistance of the C4 ball.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Robert Hannon, Emily R. Kinser, Ian D. Melville
  • Patent number: 7573115
    Abstract: The present invention provides bond pads structures between semiconductor integrated circuits and the chip package with enhanced resistance to fracture and improved reliability. Mismatch in the coefficient of temperature expansion (CTE) among the materials used in bond structures induces stress and shear on them that may result in fractures within the back end dielectric stacks and cause reliability problems of the packaging. By placing multiple metal pads which are connected to the bond pad through multiple metal via, the adhesion between the bond pads and the back end dielectric stacks is enhanced.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 11, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ian D. Melville, Mukta G. Farooq, Dae Young Jung
  • Publication number: 20090140420
    Abstract: A method creates a structure that comprises a carrier connected to an integrated circuit chip by pillars and openings. Thus, in this structure, at least one conductive pillar extends a distance or height from the surface of the integrated circuit chip and a barrier surrounds the lower portion of the conductive pillar such that the barrier covers at least some portion of the height of the pillar that is closest to the chip surface. There is at least one opening in the carrier that is large enough to accommodate the conductive pillar and the barrier, and the conductive pillar and the barrier are positioned in opening. A solder is used in the bottom of the opening to connect the conductive pillar to the bottom of the opening. The barrier prevents the solder from contacting the portion of the conductive pillar protected by the barrier.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Ian D. Melville, Kevin S. Petrarca
  • Publication number: 20090039515
    Abstract: Methods of blocking ionizing radiation to reduce soft errors and resulting IC chips are disclosed. One embodiment includes forming a front end of line (FEOL) for an integrated circuit (IC) chip; and forming at least one back end of line (BEOL) dielectric layer including ionizing radiation blocking material therein. Another embodiment includes forming a front end of line (FEOL) for an integrated circuit (IC) chip; and forming an ionizing radiation blocking layer positioned in a back end of line (BEOL) of the IC chip. The ionizing radiation blocking material or layer absorbs ionizing radiation and reduces soft errors within the IC chip.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Ian D. Melville, Kevin S. Petrarca, Kenneth P. Rodbell
  • Publication number: 20090032909
    Abstract: Structures and a method for forming the same. The structure includes a semiconductor substrate, a transistor on the semiconductor substrate, and N interconnect layers on top of the semiconductor substrate, N being a positive integer. The transistor is electrically coupled to the N interconnect layers. The structure further includes a first dielectric layer on top of the N interconnect layers and P crack stop regions on top of the first dielectric layer, P being a positive integer. The structure further includes a second dielectric layer on top of the first dielectric layer. Each crack stop region of the P crack stop regions is completely surrounded by the first dielectric layer and the second dielectric layer. The structure further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 5, 2009
    Inventors: Peter J. Brofman, Jon Alfred Casey, Ian D. Melville, David L. Questad, Wolfgang Sauter, Thomas Anthony Wassick
  • Publication number: 20090032974
    Abstract: A method of assembling a microelectronic flip-chip arrangement includes attaching a chip having a defined length to a supporting substrate, wherein the chip forms a chip shadow line of the defined length on the supporting substrate, creating a first non-wettable zone on an outer portion of the bottom surface of the chip, creating a second non-wettable zone on a portion of the supporting substrate outside the chip shadow line, underfilling the chip and forming a fillet, wherein the fillet does not extend beyond the chip shadow line, and hardening the underfill including the fillet.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Robert Hannon, Dae-Young Jung, Ian D. Melville
  • Publication number: 20090015285
    Abstract: Test structures for electrically detecting BEOL failures are provided. In an embodiment, the structure comprises: an input/output connection disposed above a primary conductive pad which is embedded in an insulator; a dielectric layer disposed upon the insulator; a primary via extending through the dielectric layer down to the primary conductive pad for providing electrical connection between the input/output connection and the primary conductive pad; and a secondary via filled with a conductive material in electrical connection with the input/output connection, the secondary via extending through the dielectric layer down to a secondary interconnect in electrical connection with a secondary conductive pad that is insulated from the primary conductive pad.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Xiao H. Liu, Ian D. Melville
  • Patent number: 7470985
    Abstract: Disclosed are embodiments of a far back end of the line solder connector and a method of forming the connector that eliminates the use aluminum, protects the integrity of the ball limiting metallurgy (BLM) layers and promotes adhesion of the BLM layers by incorporating a thin conformal conductive liner into the solder connector structure. This conductive liner coats the top of the via filling in any divots in order to create a uniform surface for BLM deposition and to, thereby, protect the integrity of the BLM layers. The liner further coats the dielectric sidewalls of the well in which the BLM layers are formed in order to enhance adhesion of the BLM layers to the well.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 30, 2008
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Laertis Economikos, Ian D. Melville, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20080274608
    Abstract: The present invention provides bond pads structures between semiconductor integrated circuits and the chip package with enhanced resistance to fracture and improved reliability. Mismatch in the coefficient of temperature expansion (CTE) among the materials used in bond structures induces stress and shear on them that may result in fractures within the back end dielectric stacks and cause reliability problems of the packaging. By placing multiple metal pads which are connected to the bond pad through multiple metal via, the adhesion between the bond pads and the back end dielectric stacks is enhanced.
    Type: Application
    Filed: July 16, 2008
    Publication date: November 6, 2008
    Applicant: International Business Machines Corporation
    Inventors: Ian D. Melville, Mukta G. Farooq, Dae Young Jung
  • Publication number: 20080248643
    Abstract: Disclosed are embodiments of a far back end of the line solder connector and a method of forming the connector that eliminates the use aluminum, protects the integrity of the ball limiting metallurgy (BLM) layers and promotes adhesion of the BLM layers by incorporating a thin conformal conductive liner into the solder connector structure. This conductive liner coats the top of the via filling in any divots in order to create a uniform surface for BLM deposition and to, thereby, protect the integrity of the BLM layers. The liner further coats the dielectric sidewalls of the well in which the BLM layers are formed in order to enhance adhesion of the BLM layers to the well.
    Type: Application
    Filed: June 13, 2008
    Publication date: October 9, 2008
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Laertis Economikos, Ian D. Melville, Kevin S. Petrarca, Richard P. Volant