Patents by Inventor Innocenzo Tortorelli

Innocenzo Tortorelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220189551
    Abstract: Techniques are provided for programming a self-selecting memory cell that stores a first logic state. To program the memory cell, a pulse having a first polarity may be applied to the cell, which may result in the memory cell having a reduced threshold voltage. During a duration in which the threshold voltage of the memory cell may be reduced (e.g., during a selection time), a second pulse having a second polarity (e.g., a different polarity) may be applied to the memory cell. Applying the second pulse to the memory cell may result in the memory cell storing a second logic state different than the first logic state.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Inventors: Hernan A. Castro, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer
  • Publication number: 20220190031
    Abstract: Methods, systems, and devices for a capacitive pillar architecture for a memory array are described. An access line within a memory array may be, include, or be coupled with a pillar. The pillar may include an exterior electrode, such as a hollow exterior electrode, surrounding an inner dielectric material that may further surround an interior, core electrode. The interior electrode may be maintained at a voltage level during at least a portion of an access operation for a memory cell coupled with the pillar. Such a pillar structure may increase a capacitance of the pillar, for example, based on a capacitive coupling between the interior and exterior electrodes. The increased capacitance may provide benefits associated with operating the memory array, such as increased memory cell programming speed, programming reliability, and read disturb immunity.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Inventors: Innocenzo Tortorelli, Fabio Pellizzer
  • Publication number: 20220172779
    Abstract: Methods, systems, and devices for programming enhancement in memory cells are described. An asymmetrically shaped memory cell may enhance ion crowding at or near a particular electrode, which may be leveraged for accurately reading a stored value of the memory cell. Programming the memory cell may cause elements within the cell to separate, resulting in ion migration towards a particular electrode. The migration may depend on the polarity of the cell and may create a high resistivity region and low resistivity region within the cell. The memory cell may be sensed by applying a voltage across the cell. The resulting current may then encounter the high resistivity region and low resistivity region, and the orientation of the regions may be representative of a first or a second logic state of the cell.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 2, 2022
    Inventors: Andrea Redaelli, Agostino Pirovano, Innocenzo Tortorelli, Fabio Pellizzer
  • Publication number: 20220172782
    Abstract: Methods, systems, and devices for memory cells for storing operational data are described. A memory device may include an array of memory cells with different sets of cells for storing data. A first set of memory cells may store data for operating the memory device, and the associated memory cells may each contain a chalcogenide storage element. A second set of memory cells may store host data. Some memory cells included in the first set may be programmed to store a first logic state and other memory cells in the first set may be left unprogrammed (and may represent a second logic state). Sense circuitry may be coupled with the array and may determine a value of data stored by the first set of memory cells.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Inventors: Mattia Boniardi, Anna Maria Conti, Innocenzo Tortorelli
  • Patent number: 11342382
    Abstract: Methods, systems, and devices for a capacitive pillar architecture for a memory array are described. An access line within a memory array may be, include, or be coupled with a pillar. The pillar may include an exterior electrode, such as a hollow exterior electrode, surrounding an inner dielectric material that may further surround an interior, core electrode. The interior electrode may be maintained at a voltage level during at least a portion of an access operation for a memory cell coupled with the pillar. Such a pillar structure may increase a capacitance of the pillar, for example, based on a capacitive coupling between the interior and exterior electrodes. The increased capacitance may provide benefits associated with operating the memory array, such as increased memory cell programming speed, programming reliability, and read disturb immunity.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: May 24, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Fabio Pellizzer
  • Publication number: 20220122664
    Abstract: The present disclosure includes apparatuses and methods for programming memory cells using asymmetric current pulses. An embodiment includes a memory having a plurality of self-selecting memory cells, and circuitry configured to program a self-selecting memory cell of the memory by applying a first current pulse or a second current pulse to the self-selecting memory cell, wherein the first current pulse is applied for a longer amount of time than the second current pulse and the first current pulse has a lower amplitude than the second current pulse.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 21, 2022
    Inventors: Mattia Robustelli, Innocenzo Tortorelli, Richard K. Dodge
  • Publication number: 20220115068
    Abstract: Methods, systems, and devices related to techniques to access a self-selecting memory device are described. A self-selecting memory cell may store one or more bits of data represented by different threshold voltages of the self-selecting memory cell. A programming pulse may be varied to establish the different threshold voltages by modifying one or more time durations during which a fixed level of voltage or current is maintained across the self-selecting memory cell. The self-selecting memory cell may include a chalcogenide alloy. A non-uniform distribution of an element in the chalcogenide alloy may determine a particular threshold voltage of the self-selecting memory cell. The shape of the programming pulse may be configured to modify a distribution of the element in the chalcogenide alloy based on a desired logic state of the self-selecting memory cell.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 14, 2022
    Inventors: Innocenzo Tortorelli, Andrea Redaelli, Agostino Pirovano, Fabio Pellizzer, Mario Allegra, Paolo Fantini
  • Patent number: 11302390
    Abstract: Methods, systems, and devices for reading a multi-level memory cell are described. The memory cell may be configured to store three or more logic states. The memory device may apply a first read voltage to a memory cell to determine a logic state stored by the memory cell. The memory device may determine whether a first snapback event occurred and apply a second read voltage based on determining that the first snapback event failed to occur based on applying the first read voltage. The memory device may determine whether a second snapback event occurred and determine the logic state based on whether the first snapback event or the second snapback event occurred.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 12, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Mattia Robustelli, Fabio Pellizzer, Innocenzo Tortorelli, Agostino Pirovano
  • Patent number: 11302393
    Abstract: Techniques are provided for programming a self-selecting memory cell that stores a first logic state. To program the memory cell, a pulse having a first polarity may be applied to the cell, which may result in the memory cell having a reduced threshold voltage. During a duration in which the threshold voltage of the memory cell may be reduced (e.g., during a selection time), a second pulse having a second polarity (e.g., a different polarity) may be applied to the memory cell. Applying the second pulse to the memory cell may result in the memory cell storing a second logic state different than the first logic state.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: April 12, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer
  • Publication number: 20220108732
    Abstract: Methods, systems, and devices for adaptive write operations for a memory device are described. In an example, the described techniques may include identifying a quantity of access operations performed on a memory array, modifying one or more parameters for a write operation based on the identified quantity of access operations, and writing logic states to the memory array by performing the write operation according to the one or more modified parameters. In some examples, the memory array may include memory cells associated with a configurable material element, such as a chalcogenide material, that stores a logic state based on a material property of the material element. In some examples, the described techniques may at least partially compensate for a change in memory material properties due to aging or other degradation or changes over time (e.g., due to accumulated access operations).
    Type: Application
    Filed: October 15, 2021
    Publication date: April 7, 2022
    Inventors: Mattia Boniardi, Richard K. Dodge, Innocenzo Tortorelli, Mattia Robustelli, Mario Allegra
  • Publication number: 20220093166
    Abstract: Methods, systems, and devices for read refresh operations are described. A memory device may include a plurality of sub-blocks of memory cells. Each sub-block may undergo a quantity of access operations (e.g., read operations, write operations). Based on the quantity of access operations performed on any one sub-block over a period of time, a read refresh operation may be performed on the memory cells of the sub-block. A read refresh operation may refresh and/or restore the data stored to the memory cells of the sub-block, and be initiated based on the memory device receiving an operation code (e.g., from a host device).
    Type: Application
    Filed: September 28, 2021
    Publication date: March 24, 2022
    Inventors: Fabio Pellizzer, Karthik Sarpatwari, Innocenzo Tortorelli, Nevil N. Gajera
  • Publication number: 20220068391
    Abstract: Methods, systems, and devices for programming techniques for polarity-based memory cells are described. A memory device may use a first type of write operation to program one or more memory cells to a first state and a second type of write operation to program one or more memory cells to a second state. Additionally or alternatively, a memory device may first attempt to use the first type of write operation to program one or more memory cells, and then may use the second type of write operation if the first attempt is unsuccessful.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Innocenzo Tortorelli, Mattia Boniardi, Mattia Robustelli
  • Publication number: 20220036946
    Abstract: Methods, systems, and devices related to a multi-level self-selecting memory device are described. A self-selecting memory cell may store one or more bits of data represented by different threshold voltages of the self-selecting memory cell. A programming pulse may be varied to establish the different threshold voltages by modifying one or more durations during which a fixed level of voltage or fixed level of current is maintained across the self-selecting memory cell. The self-selecting memory cell may include a chalcogenide alloy. A non-uniform distribution of an element in the chalcogenide alloy may determine a particular threshold voltage of the self-selecting memory cell. The shape of the programming pulse may be configured to modify a distribution of the element in the chalcogenide alloy based on a desired logic state of the self-selecting memory cell.
    Type: Application
    Filed: August 11, 2021
    Publication date: February 3, 2022
    Inventors: Andrea Redaelli, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer
  • Publication number: 20220013173
    Abstract: Disclosed herein is a memory cell. The memory cell may act both as a combined selector device and memory element. The memory cell may be programmed by applying write pulses having different polarities. Different polarities of the write pulses may program different logic states into the memory cell. The memory cell may be read by read pulses all having the same polarity. The logic state of the memory cell may be detected by observing different threshold voltages when the read pulses are applied. The different threshold voltages may be responsive to the different polarities of the write pulses.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 13, 2022
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Innocenzo Tortorelli, Stephen Tang, Christina Papagianni
  • Publication number: 20220013167
    Abstract: Methods, systems, and devices for reading a multi-level memory cell are described. The memory cell may be configured to store three or more logic states. The memory device may apply a first read voltage to a memory cell to determine a logic state stored by the memory cell. The memory device may determine whether a first snapback event occurred and apply a second read voltage based on determining that the first snapback event failed to occur based on applying the first read voltage. The memory device may determine whether a second snapback event occurred and determine the logic state based on whether the first snapback event or the second snapback event occurred.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 13, 2022
    Inventors: Mattia Robustelli, Fabio Pellizzer, Innocenzo Tortorelli, Agostino Pirovano
  • Patent number: 11217322
    Abstract: Methods, systems, and devices for drift mitigation with embedded refresh are described. A memory cell may be written to and read from using write and read voltages, respectively, that are of different polarities. For example, a memory cell may be written to by applying a first write voltage and may be subsequently read from by applying a first read voltage of a first polarity. At least one additional (e.g., a second) read voltage—a setback voltage—of a second polarity may be utilized to return the memory cell to its original state. Thus the setback voltage may mitigate a shift in the voltage distribution of the cell caused by the first read voltage.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: January 4, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Agostino Pirovano, Andrea Redaelli, Fabio Pellizzer, Hongmei Wang
  • Patent number: 11217308
    Abstract: The present disclosure includes apparatuses and methods for programming memory cells using asymmetric current pulses. An embodiment includes a memory having a plurality of self-selecting memory cells, and circuitry configured to program a self-selecting memory cell of the memory by applying a first current pulse or a second current pulse to the self-selecting memory cell, wherein the first current pulse is applied for a longer amount of time than the second current pulse and the first current pulse has a lower amplitude than the second current pulse.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: January 4, 2022
    Assignee: Micron Technology
    Inventors: Mattia Robustelli, Innocenzo Tortorelli, Richard K. Dodge
  • Publication number: 20210407592
    Abstract: A memory device can include a plurality of memory cells including a first group of memory cells and a second group of memory cells programmed to a predefined logic state. The plurality of memory cells includes a memory controller configured to apply a reading voltage to at least one selected memory cell of the first group during a reading operation, apply the reading voltage to the memory cells of the second group, and responsive to the logic state of at least one memory cell of the second group being assessed to be different from the predefined logic state perform a refresh operation of the memory cells of the first group by applying a recovery voltage higher than the reading voltage to assess the logic state thereof and reprogramming the memory cells of the first group to the logic state assessed with the recovery voltage.
    Type: Application
    Filed: December 3, 2019
    Publication date: December 30, 2021
    Inventors: Marco Sforzin, Paolo Amato, Innocenzo Tortorelli
  • Publication number: 20210407587
    Abstract: Methods, systems, and devices for mimicking neuro-biological architectures that may be present in a nervous system are described herein. A memory device may include a memory unit configured to store a value. A memory unit may include a first memory cell (e.g., an aggressor memory cell) and a plurality of other memory cells (e.g., victim memory cells). The memory unit may use thermal disturbances of the victim memory cells that may be based on an access operation to store the analog value. Thermal energy output by the aggressor memory cell during an access operation (e.g., a write operation) may cause the state of the victim memory cells to alter based on thermal relationship between the aggressor memory cell and at least some of the victim memory cells. The memory unit may be read by detecting and combining the weights of the victim memory cells during a read operation.
    Type: Application
    Filed: July 8, 2021
    Publication date: December 30, 2021
    Inventors: Mattia Boniardi, Innocenzo Tortorelli
  • Patent number: 11200950
    Abstract: Methods, systems, and devices for programming enhancement in memory cells are described. An asymmetrically shaped memory cell may enhance ion crowding at or near a particular electrode, which may be leveraged for accurately reading a stored value of the memory cell. Programming the memory cell may cause elements within the cell to separate, resulting in ion migration towards a particular electrode. The migration may depend on the polarity of the cell and may create a high resistivity region and low resistivity region within the cell. The memory cell may be sensed by applying a voltage across the cell. The resulting current may then encounter the high resistivity region and low resistivity region, and the orientation of the regions may be representative of a first or a second logic state of the cell.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: December 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano, Innocenzo Tortorelli, Fabio Pellizzer