Patents by Inventor Isaac Lauer

Isaac Lauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9887264
    Abstract: A semiconductor structure includes a plurality of semiconductor fins located on a semiconductor substrate, in which each of the semiconductor fins comprises a sequential stack of a buffered layer including a III-V semiconductor material and a channel layer including a III-V semiconductor material. The semiconductor structure further includes a gap filler material surrounding the semiconductor fins and including a plurality of trenches therein. The released portions of the channel layers of the semiconductor fins located in the trenches constitute nanowire channels of the semiconductor structure, and opposing end portions of the channel layers of the semiconductor fins located outside of the trenches constitute a source region and a drain region of the semiconductor structure, respectively. In addition, the semiconductor structure further includes a plurality of gates structures located within the trenches that surround the nanowire channels in a gate all around configuration.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Szu Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Publication number: 20180005954
    Abstract: Embodiments are directed to a method of forming a conductive via. The method includes forming an opening in a substrate and forming a conductive material along sidewall regions of the opening, wherein the conductive material occupies a first portion of an area within the opening. The method further includes forming an insulating fill in a second portion of the area within the opening, wherein at least one surface of the conductive material and at least one surface of the insulating fill are substantially coplanar with a front surface of the substrate.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: DAVID W. ABRAHAM, JOHN M. COTTE, ISAAC LAUER
  • Patent number: 9859430
    Abstract: A semiconductor wafer is provided, where the semiconductor wafer includes a semiconductor substrate and a hard mask layer formed on the semiconductor substrate. Fins are formed in the semiconductor substrate and the hard mask layer. A spacer is formed on an exposed sidewall of the hard mask layer and the semiconductor substrate. The exposed portion of the semiconductor substrate is etched. A silicon-germanium layer is epitaxially formed on the exposed portions of the semiconductor substrate. An annealed silicon-germanium region is formed by a thermal annealing process within the semiconductor substrate adjacent to the silicon-germanium layer. The silicon-germanium region and the silicon-germanium layer are removed. The hard mask layer and the spacer are removed.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9859375
    Abstract: A method of making a field-effect transistor device includes providing a substrate with a fin stack having: a first sacrificial material layer on the substrate, a first semiconductive material layer on the first sacrificial material layer, and a second sacrificial material layer on the first semiconductive material layer. The method includes inserting a dummy gate having a second thickness, a dummy void, and an outer end that is coplanar to the second face. The method includes inserting a first spacer having a first thickness and a first void, and having an outer end that is coplanar to the first face. The method includes etching the first sacrificial material layer in the second plane and the second sacrificial material layer in the fourth plane. The method includes removing, at least partially, the first spacer. The method also includes inserting a second spacer having the first thickness.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9812321
    Abstract: A semiconductor device including a gate structure present on at least two suspended channel structures, and a composite spacer present on sidewalls of the gate structure. The composite spacer may include a cladding spacer present along a cap portion of the gate structure, and an inner spacer along the channel portion of the gate structure between adjacent channel semiconductor layers of the suspended channel structures. The inner spacer may include a crescent shape with a substantially central seam.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: November 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 9812370
    Abstract: In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9793398
    Abstract: A method of forming a strained channel for a field effect transistor, including forming a sacrificial layer on a substrate, forming a channel layer on the sacrificial layer, forming a stressor layer on the channel layer, wherein the stressor layer applies a stress to the channel layer, forming at least one etching trench by removing at least a portion of the stressor layer, channel layer, and sacrificial layer, wherein the etching trench exposes at least a portion of a sidewall of the sacrificial layer, and separates the stressor layer, channel layer, and sacrificial layer into two or more stressor islands, channel blocks, and sacrificial slabs, and removing the sacrificial slabs to release the channel blocks from the substrate using a selective etch, wherein the channel blocks adhere to the substrate surface.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Isaac Lauer, Jiaxing Liu, Renee T. Mo
  • Publication number: 20170294357
    Abstract: Nanosheet semiconductor devices and methods of forming the same include forming a first stack in a first device region, the first stack including layers of a first channel material and layers of a sacrificial material. A second stack is formed in a second device region, the second stack including layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away using a wet etch that is selective to the sacrificial material and the second channel material and does not affect the first channel material or the liner. The liner protects the second channel material from the wet etch.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 12, 2017
    Inventors: Michael A. Guillorn, Isaac Lauer, Nicolas J. Loubet
  • Publication number: 20170271475
    Abstract: A semiconductor device includes a plurality of gate stacks spaced apart from each other on a substrate, an etch stop layer formed on an upper surface of each gate stack, a dielectric cap layer formed on each etch stop layer, a plurality of source/drain regions formed on the substrate between respective pairs of adjacent gate stacks, and a plurality of contacts respectively corresponding to each source/drain region, wherein the contacts are separated from the gate structures and contact their corresponding source/drain regions.
    Type: Application
    Filed: February 14, 2017
    Publication date: September 21, 2017
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Publication number: 20170256610
    Abstract: Nanosheet semiconductor devices and methods of forming the same include forming a first nanosheet stack in a first device region with layers of a first channel material and layers of a sacrificial material. A second nanosheet stack is formed in a second device region with layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away, but the liner protects the second channel material from the etch. Gate stacks are formed over and around the layers of first and second channel material to form respective first and second semiconductor devices in the first and second device regions.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Michael A. Guillorn, Isaac Lauer, Nicolas J. Loubet
  • Publication number: 20170256612
    Abstract: Nanosheet semiconductor devices and methods of forming the same include forming a first nanosheet stack in a first device region with layers of a first channel material and layers of a sacrificial material. A second nanosheet stack is formed in a second device region with layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away, but the liner protects the second channel material from the etch. Gate stacks are formed over and around the layers of first and second channel material to form respective first and second semiconductor devices in the first and second device regions.
    Type: Application
    Filed: March 31, 2017
    Publication date: September 7, 2017
    Inventors: Michael A. Guillorn, Isaac Lauer, Nicolas J. Loubet
  • Publication number: 20170256655
    Abstract: A method for fabricating a semiconductor device comprises forming a sacrificial layer of a first semiconductor material on a substrate, a layer of a second semiconductor material on the sacrificial layer, and a layer of a third semiconductor material on the layer of the second semiconductor material. Portions of the layer of the deposited material are removed to form a first nanowire arranged on the sacrificial fin and a second nanowire arranged on the first nanowire. An oxidizing process is performed that forms a first layer of oxide material on exposed portions of the second nanowire and a second layer of oxide material on exposed portions of the sacrificial fin, the first layer of oxide material having a first thickness and the second layer of oxide material having a second thickness, where the first thickness is less than the second thickness.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 7, 2017
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 9754965
    Abstract: In one aspect, a method of forming a CMOS device includes forming nanowires suspended over a BOX, wherein a first/second one or more of the nanowires are suspended at a first/second suspension height over the BOX, and wherein the first suspension height is greater than the second suspension height; depositing a conformal gate dielectric on the BOX and around the nanowires wherein the conformal gate dielectric deposited on the BOX is i) in a non-contact position with the conformal gate dielectric deposited around the first one or more of the nanowires, and ii) is in direct physical contact with the conformal gate dielectric deposited around the second one or more of the nanowires such that the BOX serves as an oxygen source during growth of a conformal oxide layer at the interface between the conformal gate dielectric and the second one or more of the nanowires.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: September 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9755017
    Abstract: Nanosheet semiconductor devices and methods of forming the same include forming a first nanosheet stack in a first device region with layers of a first channel material and layers of a sacrificial material. A second nanosheet stack is formed in a second device region with layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away, but the liner protects the second channel material from the etch. Gate stacks are formed over and around the layers of first and second channel material to form respective first and second semiconductor devices in the first and second device regions.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Guillorn, Isaac Lauer, Nicolas J. Loubet
  • Publication number: 20170250290
    Abstract: A method for fabricating a semiconductor device comprises forming a sacrificial layer of a first semiconductor material on a substrate, a layer of a second semiconductor material on the sacrificial layer, and a layer of a third semiconductor material on the layer of the second semiconductor material. Portions of the layer of the deposited material are removed to form a first nanowire arranged on the sacrificial fin and a second nanowire arranged on the first nanowire. An oxidizing process is performed that forms a first layer of oxide material on exposed portions of the second nanowire and a second layer of oxide material on exposed portions of the sacrificial fin, the first layer of oxide material having a first thickness and the second layer of oxide material having a second thickness, where the first thickness is less than the second thickness.
    Type: Application
    Filed: February 29, 2016
    Publication date: August 31, 2017
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 9748348
    Abstract: A method of forming a MOSFET device is provided including: providing an SOI wafer; forming a dummy gate oxide and dummy gates on portions of the SOI layer that serve as channel regions of the device; forming spacers and doped source/drain regions in the SOI layer on opposite sides of the dummy gates; depositing a gap fill dielectric; removing the dummy gates/gate oxide; recessing areas of the SOI layer exposed by removal of the dummy gates forming one or more u-shaped grooves that extend part-way through the SOI layer such that a thickness of the SOI layer remaining in the channel regions is less than a thickness of the SOI layer in the doped source/drain regions under the spacers; and forming u-shaped replacement gate stacks in the u-shaped grooves such that u-shaped channels are formed in fully depleted regions of the SOI layer adjacent to the u-shaped replacement gate stacks.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Robert H. Dennard, Isaac Lauer, Ramachandran Muralidhar
  • Patent number: 9748404
    Abstract: A method for fabricating a semiconductor device comprises forming a sacrificial layer of a first semiconductor material on a substrate, a layer of a second semiconductor material on the sacrificial layer, and a layer of a third semiconductor material on the layer of the second semiconductor material. Portions of the layer of the deposited material are removed to form a first nanowire arranged on the sacrificial fin and a second nanowire arranged on the first nanowire. An oxidizing process is performed that forms a first layer of oxide material on exposed portions of the second nanowire and a second layer of oxide material on exposed portions of the sacrificial fin, the first layer of oxide material having a first thickness and the second layer of oxide material having a second thickness, where the first thickness is less than the second thickness.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Publication number: 20170236944
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Publication number: 20170236900
    Abstract: Field effect transistors and methods of forming the same include forming a stack of nanowires of alternating layers of channel material and sacrificial material. A layer of sacrificial material forms a top layer of the stack. A dummy gate is formed over the stack. Stack material outside of a region covered by the dummy gate is removed. The sacrificial material is etched to form recesses in the sacrificial material layers. Spacers are formed in the recesses in the sacrificial material layers. At least one pair of spacers is formed in recesses above an uppermost layer of channel material. The dummy gates are etched away. The top layer of sacrificial material protects an uppermost layer of channel material from damage from the anisotropic etch. The sacrificial material is etched away to expose the layers of channel material. A gate stack is formed over, around, and between the layers of channel material.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 17, 2017
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 9728624
    Abstract: A method for fabricating a test structure on a wafer includes forming a fin on a substrate, forming a first gate stack over the fin, the first gate stack having a first gate width, the first gate stack including a gate dielectric layer having a first thickness, forming a second gate stack over the fin, the second gate stack having a second gate width, the second gate stack including a gate dielectric layer having a second thickness, and forming a third gate stack over the fin, the third gate stack having a third gate width, the third gate stack including a gate dielectric layer having the second thickness, wherein the first gate stack is arranged a first distance from the second gate stack and the second gate stack is arranged the first distance from the third gate stack.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight, Tenko Yamashita