Patents by Inventor Isaac Lauer

Isaac Lauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564500
    Abstract: A method of forming a MOSFET device is provided including: providing an SOI wafer; forming a dummy gate oxide and dummy gates on portions of the SOI layer that serve as channel regions of the device; forming spacers and doped source/drain regions in the SOI layer on opposite sides of the dummy gates; depositing a gap fill dielectric; removing the dummy gates/gate oxide; recessing areas of the SOI layer exposed by removal of the dummy gates forming one or more u-shaped grooves that extend part-way through the SOI layer such that a thickness of the SOI layer remaining in the channel regions is less than a thickness of the SOI layer in the doped source/drain regions under the spacers; and forming u-shaped replacement gate stacks in the u-shaped grooves such that u-shaped channels are formed in fully depleted regions of the SOI layer adjacent to the u-shaped replacement gate stacks.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Robert H. Dennard, Isaac Lauer, Ramachandran Muralidhar
  • Patent number: 9558930
    Abstract: In one aspect, a method of forming a wiring layer on a wafer is provided which includes: depositing a HSQ layer onto the wafer; cross-linking a first portion(s) of the HSQ layer using e-beam lithography; depositing a hardmask material onto the HSQ layer; patterning the hardmask using optical lithography, wherein the patterned hardmask covers a second portion(s) of the HSQ layer; patterning the HSQ layer using the patterned hardmask in a manner such that i) the first portion(s) of the HSQ layer remain and ii) the second portion(s) of the HSQ layer covered by the patterned hardmask remain, wherein by way of the patterning step trenches are formed in the HSQ layer; and filling the trenches with a conductive material to form the wiring layer on the wafer.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: January 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Szu-Lin Cheng, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20170018608
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Application
    Filed: April 7, 2016
    Publication date: January 19, 2017
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Publication number: 20170018508
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Patent number: 9548238
    Abstract: A method for manufacturing a semiconductor device, comprises forming an organic planarization layer on a plurality of gates on a substrate, wherein the plurality of gates each include a spacer layer thereon, forming an oxide layer on the organic planarization layer, removing a portion of the oxide layer to expose the organic planarization layer, stripping the organic planarization layer to form a cavity, patterning a direct lithographically-patternable gap dielectric on at least one of the gates in the cavity, and depositing a conductive contact in a remaining portion of the cavity.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 17, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Szu-Lin Cheng, Jack O. Chu, Isaac Lauer, Jeng-Bang Yau
  • Patent number: 9548355
    Abstract: A semiconductor device includes a wafer having a bulk layer and a III-V buffer layer on an upper surface of the bulk layer. The semiconductor device further includes at least one semiconductor fin on the III-V buffer layer. The semiconductor fin includes a III-V channel portion. Either the wafer or the semiconductor fin includes an oxidized III-V portion interposed between the III-V channel portion and the III-V buffer layer to prevent current leakage to the bulk layer.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: January 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Szu-Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Patent number: 9543388
    Abstract: A silicon germanium on insulator (SGOI) wafer having nFET and pFET regions is accessed, the SGOI wafer having a silicon germanium (SiGe) layer having a first germanium (Ge) concentration, and a first oxide layer over nFET and pFET and removing the first oxide layer over the pFET. Then, increasing the first Ge concentration in the SiGe layer in the pFET to a second Ge concentration and removing the first oxide layer over the nFET. Then, recessing the SiGe layer of the first Ge concentration in the nFET so that the SiGe layer is in plane with the SiGe layer in the pFET of the second Ge concentration. Then, growing a silicon (Si) layer over the SGOI in the nFET and a SiGe layer of a third concentration in the pFET, where the SiGe layer of a third concentration is in plane with the grown nFET Si layer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: January 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Gen P. Lauer, Isaac Lauer, Alexander Reznicek, Jeffrey W. Sleight
  • Publication number: 20170005090
    Abstract: In one aspect, a method of forming finFET devices is provided which includes patterning fins in a wafer; forming dummy gates over the fins; forming spacers on opposite sides of the dummy gates; depositing a gap fill oxide on the wafer, filling any gaps between the spacers; removing the dummy gates forming gate trenches; trimming the fins within the gate trenches such that a width of the fins within the gate trenches is less than the width of the fins under the spacers adjacent to the gate trenches, wherein u-shaped grooves are formed in sides of the fins within the gate trenches; and forming replacement gate stacks in the gate trenches, wherein portions of the fins adjacent to the replacement gate stacks serve as source and drain regions of the finFET devices.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Takashi Ando, Robert H. Dennard, Isaac Lauer, Ramachandran Muralidhar, Ghavam G. Shahidi
  • Publication number: 20170005173
    Abstract: A method of forming a MOSFET device is provided including: providing an SOI wafer; forming a dummy gate oxide and dummy gates on portions of the SOI layer that serve as channel regions of the device; forming spacers and doped source/drain regions in the SOI layer on opposite sides of the dummy gates; depositing a gap fill dielectric; removing the dummy gates/gate oxide; recessing areas of the SOI layer exposed by removal of the dummy gates forming one or more u-shaped grooves that extend part-way through the SOI layer such that a thickness of the SOI layer remaining in the channel regions is less than a thickness of the SOI layer in the doped source/drain regions under the spacers; and forming u-shaped replacement gate stacks in the u-shaped grooves such that u-shaped channels are formed in fully depleted regions of the SOI layer adjacent to the u-shaped replacement gate stacks.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Takashi Ando, Robert H. Dennard, Isaac Lauer, Ramachandran Muralidhar
  • Publication number: 20170005112
    Abstract: A silicon-on-insulator substrate which includes a semiconductor substrate, a buried oxide layer, and a semiconductor layer is provided. A hard mask layer is formed over a first region of the silicon-on-insulator substrate. A first silicon-germanium layer is epitaxially grown on the semiconductor layer within a second region of the silicon-on-insulator substrate. The second region is at least a portion of the semiconductor layer not covered by the hard mask layer. A thermal annealing process is performed, such that germanium atoms from the first silicon-germanium layer are migrated to the portion of the semiconductor layer to form a second silicon-germanium layer. The hard mask layer is removed. A layer of semiconductor material is epitaxially grown on top of the semiconductor layer and the second silicon-germanium layer, where the layer of semiconductor material composed of the same material as semiconductor layer.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20170005190
    Abstract: A semiconductor wafer is provided, where the semiconductor wafer includes a semiconductor substrate and a hard mask layer formed on the semiconductor substrate. Fins are formed in the semiconductor substrate and the hard mask layer. A spacer is formed on an exposed sidewall of the hard mask layer and the semiconductor substrate. The exposed portion of the semiconductor substrate is etched. A silicon-germanium layer is epitaxially formed on the exposed portions of the semiconductor substrate. An annealed silicon-germanium region is formed by a thermal annealing process within the semiconductor substrate adjacent to the silicon-germanium layer. The silicon-germanium region and the silicon-germanium layer are removed. The hard mask layer and the spacer are removed.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20170005180
    Abstract: A semiconductor device includes a first source/drain region a second source/drain region, and a gate region interposed between the first and second source/drain regions. At least one nanowire has a first end anchored to the first source/drain region and an opposing second end anchored to the second source/drain region such that the nanowire is suspended above the wafer in the gate region. At least one gate electrode is in the gate region. The gate electrode contacts an entire surface of the nanowire to define a gate-all-around configuration. At least one pair of oxidized spacers surrounds the at least one gate electrode to electrically isolate the at least one gate electrode from the first and second source/drain regions.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Szu-Lin Cheng, Michael A. Guillorn, Gen P. Lauer, Isaac Lauer
  • Publication number: 20170005188
    Abstract: A semiconductor device includes a first source/drain region a second source/drain region, and a gate region interposed between the first and second source/drain regions. At least one nanowire has a first end anchored to the first source/drain region and an opposing second end anchored to the second source/drain region such that the nanowire is suspended above the wafer in the gate region. At least one gate electrode is in the gate region. The gate electrode contacts an entire surface of the nanowire to define a gate-all-around configuration. At least one pair of oxidized spacers surrounds the at least one gate electrode to electrically isolate the at least one gate electrode from the first and second source/drain regions.
    Type: Application
    Filed: November 23, 2015
    Publication date: January 5, 2017
    Inventors: Szu-Lin Cheng, Michael A. Guillorn, Gen P. Lauer, Isaac Lauer
  • Patent number: 9536794
    Abstract: In one aspect, a method of forming a CMOS device includes forming nanowires suspended over a BOX, wherein a first/second one or more of the nanowires are suspended at a first/second suspension height over the BOX, and wherein the first suspension height is greater than the second suspension height; depositing a conformal gate dielectric on the BOX and around the nanowires wherein the conformal gate dielectric deposited on the BOX is i) in a non-contact position with the conformal gate dielectric deposited around the first one or more of the nanowires, and ii) is in direct physical contact with the conformal gate dielectric deposited around the second one or more of the nanowires such that the BOX serves as an oxygen source during growth of a conformal oxide layer at the interface between the conformal gate dielectric and the second one or more of the nanowires.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9536885
    Abstract: A semiconductor device including a pFET and an nFET where: (i) the gate and conductor channel of the pFET are electrically insulated from a buried oxide layer; and (ii) the conductor channel of the nFET is in the form of a fin extending upwards from, and in electrical contact with, the buried oxide layer. Also, a method of making the pFET by adding a fin structure extending from the top surface of the buried oxide layer, then condensing germanium locally into the lattice structure of the lower portion of the fin structure, and then etching away the lower portion of the fin structure so that it becomes a carrier channel suspended above, and electrically insulated from the buried oxide layer.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20160380049
    Abstract: A semiconductor device includes a wafer having a bulk layer and a III-V buffer layer on an upper surface of the bulk layer. The semiconductor device further includes at least one semiconductor fin on the III-V buffer layer. The semiconductor fin includes a III-V channel portion. Either the wafer or the semiconductor fin includes an oxidized III-V portion interposed between the III-V channel portion and the III-V buffer layer to prevent current leakage to the bulk layer.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 29, 2016
    Inventors: Szu-Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Publication number: 20160379820
    Abstract: A semiconductor device includes a wafer having a bulk layer and a III-V buffer layer on an upper surface of the bulk layer. The semiconductor device further includes at least one semiconductor fin on the III-V buffer layer. The semiconductor fin includes a III-V channel portion. Either the wafer or the semiconductor fin includes an oxidized III-V portion interposed between the III-V channel portion and the III-V buffer layer to prevent current leakage to the bulk layer.
    Type: Application
    Filed: November 23, 2015
    Publication date: December 29, 2016
    Inventors: Szu-Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Patent number: 9530876
    Abstract: At least one semiconductor nanowire laterally abutted by a pair of semiconductor pad portions is formed over an insulator layer. Portions of the insulator layer are etched from underneath the at least one semiconductor nanowire such that the at least one semiconductor nanowire is suspended. A temporary fill material is deposited over the at least one semiconductor nanowire, and is planarized to physically expose top surfaces of the pair of semiconductor pad portions. Trenches are formed within the pair of semiconductor pad portions, and are filled with stress-generating materials. The temporary fill material is subsequently removed. The at least one semiconductor nanowire is strained along the lengthwise direction with a tensile strain or a compressive strain.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: December 27, 2016
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20160359011
    Abstract: In one aspect, a method of forming a CMOS device with multiple transistors having different Vt's is provided which includes: forming nanowires and pads on a wafer, wherein the nanowires are suspended at varying heights above an oxide layer of the wafer; and forming gate stacks of the transistors at least partially surrounding portions of each of the nanowires by: i) depositing a conformal gate dielectric around the nanowires and on the wafer beneath the nanowires; ii) depositing a conformal workfunction metal on the conformal gate dielectric around the nanowires and on the wafer beneath the nanowires, wherein an amount of the conformal workfunction metal deposited around the nanowires is varied based on the varying heights at which the nanowires are suspended over the oxide layer; and iii) depositing a conformal poly-silicon layer on the conformal workfunction metal around the nanowires and on the wafer beneath the nanowires.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 8, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9496184
    Abstract: In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight