Patents by Inventor Ishtak Karim

Ishtak Karim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12274047
    Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.
    Type: Grant
    Filed: December 22, 2023
    Date of Patent: April 8, 2025
    Assignee: Lam Research Corporation
    Inventors: Gorun Butail, Shruti Thombare, Ishtak Karim, Patrick Van Cleemput
  • Publication number: 20250069948
    Abstract: Metal films, such as molybdenum films are deposited on a semiconductor substrate having one or more recessed features in a deposition process modulated by addition of a halogen-containing compound (e.g., an alkyl halide). In some implementations, a pre-treatment of a substrate with a halogen-containing compound is performed prior to contacting the substrate with a metal-containing precursor and a reducing agent. In some embodiments, the pre-treatment is performed such that the halogen-containing compound modifies the surface of the substrate to a greater degree in a field region of the substrate and near the opening of the recessed feature, as compared to the bottom portion of the recessed feature, where the modification of the substrate inhibits deposition of the metal. As a result, deposition of metals with improved step coverage can be achieved. In some implementations, modulation of deposition by halogen-containing compounds is used to achieve bottom-up metal growth in recessed features.
    Type: Application
    Filed: November 30, 2022
    Publication date: February 27, 2025
    Applicant: Lam Research Corporation
    Inventors: David Joseph MANDIA, Ishtak KARIM, Kyle Jordan BLAKENEY, Matthew Bertram Edward GRIFFITHS, Chiukin Steven LAI
  • Publication number: 20250062150
    Abstract: Apparatuses and systems for pedestals are provided. An example pedestal may have a body with an upper annular seal surface that is planar, perpendicular to a vertical center axis of the body, and has a radial thickness, a lower recess surface offset from the upper annular seal surface, and a plurality of micro-contact areas (MCAs) protruding from the lower recess surface, each MCA having a top surface offset from the lower recess surface by a second distance less, and one or more electrodes within the body. The upper annular seal surface may be configured to support an outer edge of a semiconductor substrate when the semiconductor substrate is being supported by the pedestal, and the upper annular seal surface and the tops of the MCAs may be configured to support the semiconductor substrate when the semiconductor substrate is being supported by the pedestal.
    Type: Application
    Filed: October 31, 2024
    Publication date: February 20, 2025
    Inventors: Patrick Girard Breiling, Michael Philip Roberts, Chloe Baldasseroni, Ishtak Karim, Adrien LaVoie, Ramesh Chandrasekharan
  • Patent number: 12142509
    Abstract: Apparatuses and systems for pedestals are provided. An example pedestal may have a body with an upper annular seal surface that is planar, perpendicular to a vertical center axis of the body, and has a radial thickness, a lower recess surface offset from the upper annular seal surface, and a plurality of micro-contact areas (MCAs) protruding from the lower recess surface, each MCA having a top surface offset from the lower recess surface by a second distance less, and one or more electrodes within the body. The upper annular seal surface may be configured to support an outer edge of a semiconductor substrate when the semiconductor substrate is being supported by the pedestal, and the upper annular seal surface and the tops of the MCAs may be configured to support the semiconductor substrate when the semiconductor substrate is being supported by the pedestal.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 12, 2024
    Assignee: Lam Research Corporation
    Inventors: Patrick G. Breiling, Michael Philip Roberts, Chloe Baldasseroni, Ishtak Karim, Adrien LaVoie, Ramesh Chandrasekharan
  • Patent number: 12077859
    Abstract: Methods and apparatuses for depositing approximately equal thicknesses of a material on at least two substrates concurrently processed in separate stations of a multi-station deposition apparatus are provided.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: September 3, 2024
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Kiyong Cho, Adrien LaVoie, Jaswinder Guliani, Purushottam Kumar, Jun Qian
  • Publication number: 20240240316
    Abstract: Methods and apparatuses for controlling precursor flow in a semiconductor processing tool are disclosed. A method may include flowing gas through a gas line, opening an ampoule valve(s), before a dose step, to start a flow of precursor from the ampoule to a process chamber through the gas line, closing the ampoule valve(s) to stop the precursor from flowing out of the ampoule, opening a process chamber valve, at the beginning of the dose step, to allow the flow of precursor to enter the process chamber, and closing the process chamber valve, at the end of the dose step, to stop the flow of precursor from entering the process chamber. A controller may include at least one memory and at least one processor and the at least one memory may store instructions for controlling the at least one processor to control precursor flow in a semiconductor processing tool.
    Type: Application
    Filed: March 29, 2024
    Publication date: July 18, 2024
    Inventors: Purushottam Kumar, Adrien LaVoie, Jun Qian, Hu Kang, Ishtak Karim, Fung Suong Ou
  • Publication number: 20240172413
    Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.
    Type: Application
    Filed: December 22, 2023
    Publication date: May 23, 2024
    Inventors: Gorun BUTAIL, Shruti THOMBARE, Ishtak KARIM, Patrick VAN CLEEMPUT
  • Patent number: 11970772
    Abstract: Methods and apparatuses for controlling precursor flow in a semiconductor processing tool are disclosed. A method may include flowing gas through a gas line, opening an ampoule valve(s), before a dose step, to start a flow of precursor from the ampoule to a process chamber through the gas line, closing the ampoule valve(s) to stop the precursor from flowing out of the ampoule, opening a process chamber valve, at the beginning of the dose step, to allow the flow of precursor to enter the process chamber, and closing the process chamber valve, at the end of the dose step, to stop the flow of precursor from entering the process chamber. A controller may include at least one memory and at least one processor and the at least one memory may store instructions for controlling the at least one processor to control precursor flow in a semiconductor processing tool.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: April 30, 2024
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Jun Qian, Hu Kang, Ishtak Karim, Fung Suong Ou
  • Patent number: 11864372
    Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Gorun Butail, Shruti Thombare, Ishtak Karim, Patrick Van Cleemput
  • Patent number: 11651963
    Abstract: A method for forming features over a wafer with a carbon based deposition is provided. The carbon based deposition is pretuned, wherein the pretuning causes a non-uniform removal of some of the carbon based deposition. An oxide deposition is deposited through an atomic layer deposition process, wherein the depositing the oxide deposition causes a non-uniform removal of some of the carbon based deposition. At least one additional process is provided, wherein the at least one additional process completes formation of features over the wafer, wherein the features are more uniform than features that would be formed without pretuning.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: May 16, 2023
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Pulkit Agarwal, Joseph R. Abel, Purushottam Kumar, Adrien Lavoie
  • Patent number: 11443975
    Abstract: A pedestal for a substrate processing system includes a pedestal body including a substrate-facing surface. An annular band is arranged on the substrate-facing surface that is configured to support a radially outer edge of the substrate. A cavity is defined in the substrate-facing surface of the pedestal body and is located radially inside of the annular band. The cavity creates a volume between a bottom surface of the substrate and the substrate-facing surface of the pedestal body. A plurality of vents pass though the pedestal body and are in fluid communication with the cavity to equalize pressure on opposing faces of the substrate during processing.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: September 13, 2022
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Patrick Breiling, Ramesh Chandrasekharan, Karl Leeser, Paul Konkola, Adrien LaVoie, Chloe Baldasseroni, Shankar Swaminathan, Ishtak Karim, Yukinori Sakiyama, Edmund Minshall, Sung Je Kim, Andrew Duvall, Frank Pasquale
  • Publication number: 20220154336
    Abstract: Methods and apparatuses for depositing approximately equal thicknesses of a material on at least two substrates concurrently processed in separate stations of a multi-station deposition apparatus are provided.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Inventors: Ishtak Karim, Kiyong Cho, Adrien LaVoie, Jaswinder Guliani, Purushottam Kumar, Jun Qian
  • Publication number: 20220033967
    Abstract: Methods and apparatuses for controlling precursor flow in a semiconductor processing tool are disclosed. A method may include flowing gas through a gas line, opening an ampoule valve(s), before a dose step, to start a flow of precursor from the ampoule to a process chamber through the gas line, closing the ampoule valve(s) to stop the precursor from flowing out of the ampoule, opening a process chamber valve, at the beginning of the dose step, to allow the flow of precursor to enter the process chamber, and closing the process chamber valve, at the end of the dose step, to stop the flow of precursor from entering the process chamber. A controller may include at least one memory and at least one processor and the at least one memory may store instructions for controlling the at least one processor to control precursor flow in a semiconductor processing tool.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Purushottam Kumar, Adrien LaVoie, Jun Qian, Hu Kang, Ishtak Karim, Fung Suong Ou
  • Publication number: 20220028864
    Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.
    Type: Application
    Filed: November 25, 2019
    Publication date: January 27, 2022
    Inventors: Gorun BUTAIL, Shruti THOMBARE, Ishtak KARIM, Patrick VAN CLEEMPUT
  • Patent number: 11180850
    Abstract: Methods and apparatuses for controlling precursor flow in a semiconductor processing tool are disclosed. A method may include flowing gas through a gas line, opening an ampoule valve(s), before a dose step, to start a flow of precursor from the ampoule to a process chamber through the gas line, closing the ampoule valve(s) to stop the precursor from flowing out of the ampoule, opening a process chamber valve, at the beginning of the dose step, to allow the flow of precursor to enter the process chamber, and closing the process chamber valve, at the end of the dose step, to stop the flow of precursor from entering the process chamber. A controller may include at least one memory and at least one processor and the at least one memory may store instructions for controlling the at least one processor to control precursor flow in a semiconductor processing tool.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: November 23, 2021
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Jun Qian, Hu Kang, Ishtak Karim, Fung Suong Ou
  • Publication number: 20210202250
    Abstract: A method for forming features over a wafer with a carbon based deposition is provided. The carbon based deposition is pretuned, wherein the pretuning causes a non-uniform removal of some of the carbon based deposition. An oxide deposition is deposited through an atomic layer deposition process, wherein the depositing the oxide deposition causes a non-uniform removal of some of the carbon based deposition. At least one additional process is provided, wherein the at least one additional process completes formation of features over the wafer, wherein the features are more uniform than features that would be formed without pretuning.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 1, 2021
    Inventors: Ishtak KARIM, Pulkit AGARWAL, Joseph R. ABEL, Purushottam KUMAR, Adrien LAVOIE
  • Patent number: 10978302
    Abstract: A method for forming features over a wafer with a carbon based deposition is provided. The carbon based deposition is pretuned, wherein the pretuning causes a non-uniform removal of some of the carbon based deposition. An oxide deposition of a silicon oxide based material is deposited through an atomic layer deposition process, wherein the depositing the oxide deposition causes a non-uniform removal of some of the carbon based deposition, which is complementary to the non-uniform removal of some of the carbon based deposition by the pretuning.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: April 13, 2021
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Pulkit Agarwal, Joseph Abel, Purushottam Kumar, Adrien Lavoie
  • Publication number: 20210013080
    Abstract: Apparatuses and systems for pedestals are provided. An example pedestal may have a body with an upper annular seal surface that is planar, perpendicular to a vertical center axis of the body, and has a radial thickness, a lower recess surface offset from the upper annular seal surface, and a plurality of micro-contact areas (MCAs) protruding from the lower recess surface, each MCA having a top surface offset from the lower recess surface by a second distance less, and one or more electrodes within the body. The upper annular seal surface may be configured to support an outer edge of a semiconductor substrate when the semiconductor substrate is being supported by the pedestal, and the upper annular seal surface and the tops of the MCAs may be configured to support the semiconductor substrate when the semiconductor substrate is being supported by the pedestal.
    Type: Application
    Filed: April 4, 2019
    Publication date: January 14, 2021
    Inventors: Patrick G. Breiling, Michael Philip Roberts, Chloe Baldasseroni, Ishtak Karim, Adrien LaVoie, Ramesh Chandrasekharan
  • Publication number: 20200227304
    Abstract: A pedestal for a substrate processing system includes a pedestal body including a substrate-facing surface. An annular band is arranged on the substrate-facing surface that is configured to support a radially outer edge of the substrate. A cavity is defined in the substrate-facing surface of the pedestal body and is located radially inside of the annular band. The cavity creates a volume between a bottom surface of the substrate and the substrate-facing surface of the pedestal body. A plurality of vents pass though the pedestal body and are in fluid communication with the cavity to equalize pressure on opposing faces of the substrate during processing.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Inventors: Patrick Breiling, Ramesh Chandrasekharan, Karl Leeser, Paul Konkola, Adrien LaVoie, Chloe Baldasseroni, Shankar Swaminathan, Ishtak Karim, Yukinori Sakiyama, Edmund Minshall, Sung Je Kim, Andrew Duvall, Frank Pasquale
  • Patent number: 10692717
    Abstract: A method for defining thin film layers on a surface of a substrate includes exposing the surface of the substrate to a first precursor via a first plasma to allow the first precursor to be absorbed by the surface of the substrate. A second precursor that is different from the first precursor is applied to the surface of the substrate via a second plasma. The second precursor is a Carbon dioxide precursor that releases sufficient oxygen radicals to react with the first precursor to form an oxide film layer on the surface of the substrate.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: June 23, 2020
    Assignee: Lam Research Corporation
    Inventors: Douglas Walter Agnew, Ishtak Karim