Patents by Inventor Ishtak Karim

Ishtak Karim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9738977
    Abstract: Disclosed are methods of and systems for depositing a film. The methods may include: (a) determining process conditions, including a flow condition of a curtain gas that flows around the periphery of each station in the chamber, for performing film deposition in the chamber, (b) flowing the curtain gas to each station in the chamber during film deposition according to the process conditions determined in (a), (c) determining, during or after (b), an adjusted flow condition of the curtain gas in the chamber to improve substrate nonuniformity, and (d) flowing, after (c), the curtain gas during film deposition according to the adjusted flow condition determined in (c). The systems may include a gas delivery system, a processing chamber, and a controller having control logic for performing one or more of (a)-(d).
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: August 22, 2017
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Adrien LaVoie
  • Publication number: 20170178898
    Abstract: A process tuning kit for use in a chemical deposition apparatus wherein the process tuning kit includes a carrier ring, horseshoes and shims. The horseshoes have the same dimensions and the shims are provided in sets with different thicknesses to control the height of the horseshoes with respect to an upper surface of a pedestal assembly on which the horseshoes and shims are mounted. A semiconductor substrate is transported into a vacuum chamber of the chemical deposition apparatus by the carrier ring which is placed on the horseshoes such that minimum contact area supports lift the substrate from the carrier ring and support the substrate at a predetermined offset with respect to an upper surface of the pedestal assembly. During processing of the substrate, backside deposition can be reduced by using shims of desired thickness to control the predetermined offset.
    Type: Application
    Filed: February 24, 2016
    Publication date: June 22, 2017
    Applicant: Lam Research Corporation
    Inventors: Hu Kang, Ishtak Karim, Purushottam Kumar, Jun Qian, Ramesh Chandrasekharan, Adrien LaVoie
  • Publication number: 20170141002
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency signals of a first signal frequency are supplied to the plasma generation region to generate a plasma within the plasma generation region. Formation of a plasma instability is detected within the plasma based on supply of the radiofrequency signals of the first signal frequency. After detecting formation of the plasma instability, radiofrequency signals of a second signal frequency are supplied to the plasma generation region in lieu of the radiofrequency signals of the first signal frequency to generate the plasma. The second signal frequency is greater than the first signal frequency and is set to cause a reduction in ion energy within the plasma and a corresponding reduction in secondary electron emission from the wafer caused by ion interaction with the wafer.
    Type: Application
    Filed: April 4, 2016
    Publication date: May 18, 2017
    Inventors: Ishtak Karim, Yukinori Sakiyama, Yaswanth Rangineni, Edward Augustyniak, Douglas Keil, Ramesh Chandrasekharan, Adrien LaVoie, Karl Leeser
  • Publication number: 20170141000
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region during multiple sequential plasma processing cycles of a plasma processing operation. At least one electrical sensor connected to the electrode measures a radiofrequency parameter on the electrode during each of the multiple sequential plasma processing cycles. A value of the radiofrequency parameter as measured on the electrode is determined for each of the multiple sequential plasma processing cycles. A determination is made as to whether or not any indicatory trend or change exists in the values of the radiofrequency parameter as measured on the electrode over the multiple sequential plasma processing cycles, where the indicatory trend or change indicates formation of a plasma instability during the plasma processing operation.
    Type: Application
    Filed: March 18, 2016
    Publication date: May 18, 2017
    Inventors: Yukinori Sakiyama, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Ramesh Chandrasekharan, Edward Augustyniak, Douglas Keil
  • Patent number: 9644271
    Abstract: Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 9, 2017
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Yukinori Sakiyama, Edward Augustyniak, Karl Leeser, Chunhai Ji
  • Publication number: 20170096735
    Abstract: Methods and apparatuses for controlling precursor flow in a semiconductor processing tool are disclosed. A method may include flowing gas through a gas line, opening an ampoule valve(s), before a dose step, to start a flow of precursor from the ampoule to a process chamber through the gas line, closing the ampoule valve(s) to stop the precursor from flowing out of the ampoule, opening a process chamber valve, at the beginning of the dose step, to allow the flow of precursor to enter the process chamber, and closing the process chamber valve, at the end of the dose step, to stop the flow of precursor from entering the process chamber. A controller may include at least one memory and at least one processor and the at least one memory may store instructions for controlling the at least one processor to control precursor flow in a semiconductor processing tool.
    Type: Application
    Filed: October 30, 2015
    Publication date: April 6, 2017
    Inventors: Purushottam Kumar, Adrien LaVoie, Jun Qian, Hu Kang, Ishtak Karim, Fung Suong Ou
  • Patent number: 9478438
    Abstract: Methods of depositing highly conformal and pure titanium films at low temperatures are provided. Methods involve exposing a substrate to titanium tetraiodide, purging the chamber, exposing the substrate to a plasma, purging the chamber, and repeating these operations. Titanium films are deposited at low temperatures less than about 450° C.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 25, 2016
    Assignee: Lam Research Corporation
    Inventors: Shruti Vivek Thombare, Ishtak Karim, Sanjay Gopinath, Michal Danek
  • Patent number: 9478411
    Abstract: Methods of depositing and tuning deposition of sub-stoichiometric titanium oxide are provided. Methods involve depositing highly pure and conformal titanium on a substrate in a chamber by (i) exposing the substrate to titanium tetraiodide, (ii) purging the chamber, (iii) exposing the substrate to a plasma, (iv) purging the chamber, (v) repeating (i) through (iv), and treating the deposited titanium on the substrate to form sub-stoichiometric titanium oxide. Titanium oxide may also be deposited prior to depositing titanium on the substrate. Treatments include substrate exposure to an oxygen source and/or annealing the substrate.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 25, 2016
    Assignee: Lam Research Corporation
    Inventors: Shruti Vivek Thombare, Ishtak Karim, Sanjay Gopinath, Reza Arghavani, Michal Danek
  • Publication number: 20160056037
    Abstract: Methods of depositing and tuning deposition of sub-stoichiometric titanium oxide are provided. Methods involve depositing highly pure and conformal titanium on a substrate in a chamber by (i) exposing the substrate to titanium tetraiodide, (ii) purging the chamber, (iii) exposing the substrate to a plasma, (iv) purging the chamber, (v) repeating (i) through (iv), and treating the deposited titanium on the substrate to form sub-stoichiometric titanium oxide. Titanium oxide may also be deposited prior to depositing titanium on the substrate. Treatments include substrate exposure to an oxygen source and/or annealing the substrate.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 25, 2016
    Inventors: Shruti Vivek Thombare, Ishtak Karim, Sanjay Gopinath, Reza Arghavani, Michal Danek
  • Publication number: 20160056053
    Abstract: Methods of depositing highly conformal and pure titanium films at low temperatures are provided. Methods involve exposing a substrate to titanium tetraiodide, purging the chamber, exposing the substrate to a plasma, purging the chamber, and repeating these operations. Titanium films are deposited at low temperatures less than about 450° C.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 25, 2016
    Inventors: Shruti Vivek Thombare, Ishtak Karim, Sanjay Gopinath, Michal Danek
  • Publication number: 20150163860
    Abstract: A technique and apparatus are provided for supplying substantially uniform radiant heat energy to a semiconductor wafer in a load lock or process chamber using a light source and a set of radially-symmetric reflectors.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 11, 2015
    Inventors: Vincent E. Burkhart, Yorkman Ma, Martin E. Freeborn, Ishtak Karim
  • Publication number: 20140127912
    Abstract: Plasma deposition in which properties of a discharge plasma are controlled by modifying the grounding path of the plasma is potentially applicable in any plasma deposition environment, but finds particular use in ionized physical vapor deposition (iPVD) gapfill applications. Plasma flux ion energy and E/D ratio can be controlled by modifying the grounding path (grounding surface's location, shape and/or area). Control of plasma properties in this way can reduce or eliminate reliance on conventional costly and complicated RF systems for plasma control. For a high density plasma source, the ionization fraction and ion energy can be high enough that self-sputtering may occur even without any RF bias. And unlike RF induced sputtering, self-sputtering has narrow ion energy distribution, which provides better process controllability and larger process window for integration.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Inventors: Liqi Wu, Ishtak Karim, Huatan Qiu
  • Publication number: 20130206725
    Abstract: Disclosed are methods and associated apparatus for depositing layers of material on a substrate (e.g., a semiconductor substrate) using ionized physical vapor deposition (iPVD). Also disclosed are methods and associated apparatus for plasma etching (e.g., resputtering) layers of material on a semiconductor substrate.
    Type: Application
    Filed: March 16, 2010
    Publication date: August 15, 2013
    Inventors: Karl Leeser, Ishtak Karim, Alexandre de Chambrier, Liqi Wu, Chunming Zhou
  • Patent number: 8343318
    Abstract: A physical vapor deposition (PVD) system includes a chamber and a plurality of electromagnetic coils arranged around the chamber. First and second annular bands of permanent magnets are arranged around the chamber with poles oriented perpendicular to a magnetic field imposed by the electromagnetic coils. Each of the permanent magnets in the first annular band is arranged with poles having a first polarity closest to a central axis of the chamber. Each of the permanent magnets in the second annular band is arranged anti-parallel with respect to the permanent magnets in the first annular band.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 1, 2013
    Assignee: Novellus Systems Inc.
    Inventors: Karl Leeser, Ishtak Karim, Alexander Dulkin
  • Publication number: 20120228125
    Abstract: A physical vapor deposition (PVD) system includes N coaxial coils arranged in a first plane parallel to a substrate-supporting surface of a pedestal in a chamber of a PVD system and below the pedestal. M coaxial coils are arranged adjacent to the pedestal. Plasma is created in the chamber. A magnetic field well is created above a substrate by supplying N currents to the N coaxial coils, respectively, and M currents to the M coaxial coils, respectively. The N currents flow in a first direction in the N coaxial coils and the M second currents flow in a second direction in the M coaxial coils that is opposite to the first direction. A recessed feature on the substrate arranged on the pedestal is filled with a metal-containing material by PVD using at least one operation with high density plasma having a fractional ionization of metal greater than 30%.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 13, 2012
    Inventors: Liqi Wu, Ishtak Karim, Huatan Qiu, Kie-Jin Park, Chunming Zhou, Karthik Colinjivadi
  • Publication number: 20120070589
    Abstract: A physical vapor deposition (PVD) system includes a chamber and a target arranged in a target region of the chamber. A pedestal has a surface for supporting a substrate and is arranged in a substrate region of the chamber. A transfer region is located between the target region and the substrate region. N coaxial coils are arranged in a first plane parallel to the surface of the pedestal and below the pedestal. M coaxial coils are arranged adjacent to the pedestal. N currents flow in a first direction in the N coaxial coils, respectively, and M currents flow in a second direction in the M coaxial coils that is opposite to the first direction, respectively.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 22, 2012
    Inventors: Liqi Wu, Ishtak Karim, Huatan Qiu, Kie-Jin Park, Chunming Zhou, Karthik Colinjivadi
  • Publication number: 20110233050
    Abstract: A physical vapor deposition (PVD) system includes a chamber and a plurality of electromagnetic coils arranged around the chamber. First and second annular bands of permanent magnets are arranged around the chamber with poles oriented perpendicular to a magnetic field imposed by the electromagnetic coils. Each of the permanent magnets in the first annular band is arranged with poles having a first polarity closest to a central axis of the chamber. Each of the permanent magnets in the second annular band is arranged anti-parallel with respect to the permanent magnets in the first annular band.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Inventors: Karl Leeser, Ishtak Karim, Alexander Dulkin