Patents by Inventor Isik C. Kizilyalli

Isik C. Kizilyalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9093395
    Abstract: A diode includes a substrate characterized by a first dislocation density and a first conductivity type, a first contact coupled to the substrate, and a masking layer having a predetermined thickness and coupled to the semiconductor substrate. The masking layer comprises a plurality of continuous sections and a plurality of openings exposing the substrate and disposed between the continuous sections. The diode also includes an epitaxial layer greater than 5 ?m thick coupled to the substrate and the masking layer. The epitaxial layer comprises a first set of regions overlying the plurality of openings and characterized by a second dislocation density and a second set of regions overlying the set of continuous sections and characterized by a third dislocation density less than the first dislocation density and the second dislocation density. The diode further includes a second contact coupled to the epitaxial layer.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 28, 2015
    Assignee: Avogy, Inc.
    Inventors: David P. Bour, Linda Romano, Thomas R. Prunty, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Richard J. Brown
  • Patent number: 9093591
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as solar cells. In one aspect, a device includes an absorber layer made of gallium arsenide (GaAs) and having only one type of doping. An emitter layer is located closer than the absorber layer to a back side of the device and is made of a different material and having a higher bandgap than the absorber layer. A heterojunction is formed between the emitter layer and the absorber layer, and a p-n junction is formed between the emitter layer and the absorber layer and at least partially within the different material at a location offset from the heterojunction. An intermediate layer is located between the absorber layer and the emitter layer and provides the offset of the p-n junction from the heterojunction, and includes a graded layer and an ungraded back window layer.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 28, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Publication number: 20150200097
    Abstract: A method of making an edge terminated semiconductor device includes providing a GaN substrate having a GaN epitaxial layer grown thereon and exposing a portion of the GaN epitaxial layer to ion implantation. The energy dose is selected to provide a resistivity that is at least 90% of maximum achievable resistivity. The method also includes depositing a conductive layer over a portion of the implanted region.
    Type: Application
    Filed: December 2, 2014
    Publication date: July 16, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150200268
    Abstract: An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 16, 2015
    Applicant: Avogy, Inc.
    Inventors: Madhan M. Raj, Brian Alvarez, David P. Bour, Andrew P. Edwards, Hui Nie, Isik C. Kizilyalli
  • Patent number: 9082919
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as photovoltaic cells. In one aspect, a method for forming a device includes forming an absorber layer made of gallium arsenide (GaAs) and having one type of doping, and forming an emitter layer made of a different material and having a higher bandgap than the absorber layer. An intermediate layer can be formed between emitter and absorber layers. A heterojunction and p-n junction are formed between the emitter layer and the absorber layer, where the p-n junction is formed at least partially within the different material at a location offset from the heterojunction. A majority of the absorber layer can be outside of a depletion region formed by the p-n junction. The p-n junction causes a voltage to be generated in the cell in response to the cell being exposed to light at a front side.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 14, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Publication number: 20150179733
    Abstract: A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.
    Type: Application
    Filed: January 12, 2015
    Publication date: June 25, 2015
    Inventors: Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, David P. Bour, Linda Romano, Thomas R. Prunty
  • Publication number: 20150179772
    Abstract: A semiconductor structure includes a III-nitride substrate and a drift region coupled to the III-nitride substrate along a growth direction. The semiconductor substrate also includes a channel region coupled to the drift region. The channel region is defined by a channel sidewall disposed substantially along the growth direction. The semiconductor substrate further includes a gate region disposed laterally with respect to the channel region.
    Type: Application
    Filed: September 18, 2014
    Publication date: June 25, 2015
    Inventors: Richard J. Brown, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, David P. Bour
  • Publication number: 20150155372
    Abstract: A method of growing a III-nitride-based epitaxial structure is disclosed. The method includes forming a GaN-based drift layer coupled to the GaN-based substrate, where forming the GaN-based drift layer comprises doping the drift layer with indium to cause the indium concentration of the drift layer to be less than about 1×1016 cm?3 and to cause the carbon concentration of the drift layer to be less than about 1×1016 cm?3. The method also includes forming an n-type channel layer coupled to the GaN-based drift layer, forming an n-contact layer coupled to the GaN-based drift layer, and forming a second electrical contact electrically coupled to the n-contact layer.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 4, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Patent number: 9048366
    Abstract: Embodiments generally relate to optoelectronic semiconductor devices such as photovoltaic cells. In one aspect, a method for forming a device includes forming an absorber layer made of gallium arsenide (GaAs) and having one type of doping, and forming an emitter layer made of a different material and having a higher bandgap than the absorber layer. An intermediate layer can be formed between emitter and absorber layers. A heterojunction and p-n junction are formed between the emitter layer and the absorber layer, where the p-n junction is formed at least partially within the different material at a location offset from the heterojunction. A majority of the absorber layer can be outside of a depletion region formed by the p-n junction. The p-n junction causes a voltage to be generated in the cell in response to the cell being exposed to light at a front side.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: June 2, 2015
    Assignee: ALTA DEVICES, INC.
    Inventors: Hui Nie, Brendan M. Kayes, Isik C. Kizilyalli
  • Publication number: 20150137140
    Abstract: A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 21, 2015
    Inventors: Donald R. Disney, Hui Nie, Isik C. Kizilyalli, Richard J. Brown
  • Publication number: 20150140746
    Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
    Type: Application
    Filed: December 17, 2014
    Publication date: May 21, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150132899
    Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150129886
    Abstract: A method for fabricating a lateral gallium nitride (GaN) field-effect transistor includes forming a first and second GaN layer coupled to a substrate, removing a first portion of the second GaN layer to expose a portion of the first GaN layer, and forming a third GaN layer coupled to the second GaN layer and the exposed portion of the first GaN layer. The method also includes removing a portion of the third GaN layer to expose a portion of the second GaN layer, forming a source structure coupled to the third GaN layer. A first portion of the second GaN layer is disposed between the source structure and the second GaN layer. A drain structure is formed that is coupled to the third GaN layer or alternatively to the substrate. The method also includes forming a gate structure coupled to the third GaN layer such that a second portion of the third GaN layer is disposed between the gate structure and the second GaN layer.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: AVOGY, INC.
    Inventors: Ozgur Aktas, Isik C. Kizilyalli
  • Patent number: 9029680
    Abstract: Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. A photovoltaic (PV) unit may have all electrical contacts positioned on the back side of the PV device to avoid shadowing and increase absorption of the photons impinging on the front side of the PV unit. Several PV units may be combined into PV banks, and an array of PV banks may be connected to form a PV module with thin strips of metal or conductive polymer formed at low temperature. Such innovations may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 12, 2015
    Assignee: Alta Devices, Inc.
    Inventors: Isik C. Kizilyalli, Melissa Archer, Harry Atwater, Thomas J. Gmitter, Gang He, Andreas Hegedus, Gregg Higashi
  • Patent number: 9029687
    Abstract: Methods and apparatus for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells are provided. A photovoltaic (PV) device generally includes a window layer; an absorber layer disposed below the window layer such that electrons are generated when photons travel through the window layer and are absorbed by the absorber layer; and a plurality of contacts for external connection coupled to the absorber layer, such that all of the contacts for external connection are disposed below the absorber layer and do not block any of the photons from reaching the absorber layer through the window layer. Locating all the contacts on the back side of the PV device avoids solar shadows caused by front side contacts, typically found in conventional solar cells. Therefore, PV devices described herein with back side contacts may allow for increased efficiency when compared to conventional solar cells.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 12, 2015
    Assignee: Alta Devices, Inc.
    Inventors: Isik C. Kizilyalli, Melissa Archer, Harry Atwater, Thomas J. Gmitter, Gang He, Andreas Hegedus, Gregg Higashi
  • Patent number: 9029210
    Abstract: A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: May 12, 2015
    Assignee: AVOGY, INC.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Isik C. Kizilyalli
  • Publication number: 20150123138
    Abstract: An electronic device includes a III-V substrate having a hexagonal crystal structure and a normal to a growth surface characterized by a misorientation from the <0001> direction of between 0.15° and 0.65°. The electronic device also includes a first epitaxial layer coupled to the III-V substrate and a second epitaxial layer coupled to the first epitaxial layer. The electronic device further includes a first contact in electrical contact with the substrate and a second contact in electrical contact with the second epitaxial layer.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: AVOGY, INC.
    Inventors: Isik C. Kizilyalli, David P. Bour, Thomas R. Prunty, Gangfeng Ye
  • Patent number: 9006800
    Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 14, 2015
    Assignee: Avogy, Inc.
    Inventors: Linda Romano, Andrew Edwards, Dave P. Bour, Isik C. Kizilyalli
  • Patent number: 8981432
    Abstract: A method for fabricating an electronic device includes providing an engineered substrate structure comprising a III-nitride seed layer, forming GaN-based functional layers coupled to the III-nitride seed layer, and forming a first electrode structure electrically coupled to at least a portion of the GaN-based functional layers. The method also includes joining a carrier substrate opposing the GaN-based functional layers and removing at least a portion of the engineered substrate structure. The method further includes forming a second electrode structure electrically coupled to at least another portion of the GaN-based functional layers and removing the carrier substrate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 17, 2015
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Donald R. Disney, Isik C. Kizilyalli
  • Patent number: 8969180
    Abstract: A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: March 3, 2015
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Richard J. Brown, Isik C. Kizilyalli