Patents by Inventor János Farkas

János Farkas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7176574
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: February 13, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Publication number: 20060294259
    Abstract: The presented idea is a cheap solution for audience monitoring in multicast capable networks e.g. Ethernet, IP or UMTS. There is no need for user equipment in order to monitor the viewers' watching behavior. The measurement is done in the operator's network; therefore, there is no need to contact the end user. The idea can be applied in systems comprising multicast capable network contention server, network devices and user equipment. The content is carried in data packets to the end user. The network devices are remote manageable. The user can choose between several contents. The aim is to measure the user statistics regarding the chosen content. According to the invention it is enough to place a measurement host with our proposed software block in the network, which collects data from the network devices in the edge of the network periodically in order to make a content access survey.
    Type: Application
    Filed: October 24, 2003
    Publication date: December 28, 2006
    Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Gergely Matefi, Janos Farkas, Tamas Elteto
  • Publication number: 20060223320
    Abstract: The present invention provides a composition and a method of polishing a surface that minimizes abrasive removal of material from the surface. To that end, the composition is formulated to maximize dissolution of the material from the surface.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 5, 2006
    Inventors: Kevin Cooper, Jennifer Cooper, Janos Farkas, John Flake, Johannes Groschopf, Yuri Solomentsev
  • Publication number: 20060198304
    Abstract: A call admission control system and method for Internet Protocol (IP) Differentiated Services (DiffServ) network having at least one node for interpreting signaling messages and controlling traffic load in the network. The method consists of an initialization (601) and a real-time phase (602). In initialization phase (601), coefficients of the approximating hyperplanes are computed (61) and stored (62). This phase is repeated when the descriptor of a traffic class changes (63), which usually happens when nodes are configured or reconfigured. A traffic mix is admissible (67), if for each real-time traffic class both the stability (65) and the delay (66) constraints are fulfilled. Stability is tested by evaluating the number of lost packets and comparing it to the tolerated packet loss ratio for each class in that queue. Delay constraint is tested by checking if the traffic mix is below at least one of the approximating hyperplanes in the space of number of sessions for each class.
    Type: Application
    Filed: July 27, 2004
    Publication date: September 7, 2006
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Gergely Matefi, Csaba Antal, Janos Farkas
  • Publication number: 20050035459
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Application
    Filed: September 22, 2004
    Publication date: February 17, 2005
    Inventors: Kathleen Yu, Kirk Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh Lii
  • Patent number: 6815820
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: November 9, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Publication number: 20030209779
    Abstract: A conductive line varies in thickness to assist in overcoming RC delays and noise coupling. By varying line thickness, variation in conductor width is avoided if necessary to maintain a specified minimum pitch between conductors while maintaining predetermined desired RC parameters and noise characteristics of the conductive line. Conductor depth variation is achieved by etching a dielectric layer to different thicknesses. A subsequent conductive fill over the dielectric layer and in the differing thicknesses results in a conductive line that varies in thickness. Different conductive line thicknesses available at a particular metal level can additionally be used for semiconductor structures other than a signal or a power supply conductive line, such as a contact, a via or an electrode of a device. The thickness analysis required to determine how interconnect thickness is varied in order to meet a desired design criteria may be automated and provided as a CAD tool.
    Type: Application
    Filed: May 9, 2002
    Publication date: November 13, 2003
    Inventors: Kathleen C. Yu, Kirk J. Strozewski, Janos Farkas, Hector Sanchez, Yeong-Jyh T. Lii
  • Patent number: 6573173
    Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: June 3, 2003
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
  • Publication number: 20020151167
    Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.
    Type: Application
    Filed: June 20, 2002
    Publication date: October 17, 2002
    Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
  • Patent number: 6444569
    Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: September 3, 2002
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
  • Patent number: 6313024
    Abstract: In one embodiment of the invention, conductive support structures (112) are formed within an interlevel dielectric layer. The conductive support structures (112) lie within the bond pad region (111) of the integrated circuit and provide support to portions of the interlevel dielectric layer that have a low Young's modulus. The conductive support structures (112) are formed using the same processes that are used to form metal interconnects in the device region (109) of the integrated circuit, but they are not electrically coupled to semiconductor devices that lie within the device region (109). Conductive support structures (114) are also formed within the scribe line region (104) to provide support to the interlevel dielectric layer in this region of the integrated circuit.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: November 6, 2001
    Assignee: Motorola, Inc.
    Inventors: Nigel G. Cave, Kathleen C. Yu, Janos Farkas
  • Publication number: 20010027083
    Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scubber.
    Type: Application
    Filed: April 16, 2001
    Publication date: October 4, 2001
    Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
  • Patent number: 6274478
    Abstract: A copper interconnect polishing process begins by polishing (17) a bulk thickness of copper (63) using a first platen. A second platen is then used to remove (19) a thin remaining interfacial copper layer to expose a barrier film (61). Computer control (21) monitors polish times of the first and second platen and adjusts these times to improve wafer throughput. One or more platens and/or the wafer is rinsed (20) between the interfacial copper polish and the barrier polish to reduce slurry cross contamination. A third platen and slurry is then used to polish away exposed portions of the barrier (61) to complete polishing of the copper interconnect structure. A holding tank that contains anti-corrosive fluid is used to queue the wafers until subsequent scrubbing operations (25). A scrubbing operation (25) that is substantially void of light is used to reduce photovoltaic induced corrosion of copper in the drying chamber of the scrubber.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: August 14, 2001
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, Brian G. Anthony, Abbas Guvenilir, Mohammed Rabiul Islam, Venkat Kolagunta, John Mendonca, Rajesh Tiwari, Suresh Venkatesan
  • Patent number: 6204169
    Abstract: A process of polishing two dissimilar conductive materials deposited on semiconductor device substrate optimizes the polishing of each of the conductive material independently, while utilizing the same polishing equipment for manufacturing efficiency. A tungsten layer (258) and a titanium layer (256) of a semiconductor device substrate (250) are polished using one polisher (10) but two different slurry formulations. The two slurries can be dispensed sequentially onto the same polishing platen (132) from two different urce containers (111 and 112), wherein the first slurry is dispensed until e tungsten is removed and then the slurry dispense is switched to second slurry for removal of the titanium. In a preferred embodiment, the first slurry composition is a ferric nitrate slurry while the second slurry composition is an oxalic acid slurry.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: March 20, 2001
    Assignee: Motorola Inc.
    Inventors: Rajeev Bajaj, Janos Farkas, Sung C. Kim, Jaime Saravia
  • Patent number: 6096652
    Abstract: A method of CMP of the semiconductor device where the method comprises the sequential steps of providing a semiconductor device, forming a copper layer on the semiconductor device and planarizing the copper layer with a medium. The medium comprises an abrasive component and a chemical solution. The chemical solution comprises water, an oxidizing agent, a first coordinating ligand adapted to form a complex with Cu(I) and a second coordinating ligand adapted to form a complex with Cu(II).
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: August 1, 2000
    Assignee: Motorola, Inc.
    Inventors: David K. Watts, Janos Farkas, Jason Gomez, Chelsea Dang
  • Patent number: 6037668
    Abstract: In one embodiment of the invention, conductive support structures (112) are formed within an interlevel dielectric layer. The conductive support structures (112) lie within the bond pad region (111) of the integrated circuit and provide support to portions of the interlevel dielectric layer that have a low Young's modulus. The conductive support structures (112) are formed using the same processes that are used to form metal interconnects in the device region (109) of the integrated circuit, but they are not electrically coupled to semiconductor devices that lie within the device region (109). Conductive support structures (114) are also formed within the scribe line region (104) to provide support to the interlevel dielectric layer in this region of the integrated circuit.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: March 14, 2000
    Assignee: Motorola, Inc.
    Inventors: Nigel G. Cave, Kathleen C. Yu, Janos Farkas
  • Patent number: 6001730
    Abstract: A method for forming a copper interconnect on an integrated circuit (IC) begins by forming a dielectric layer (20) having an opening. A tantalum-based barrier layer (21), such as TaN or TaSiN, is formed within the opening in the layer (20). A copper layer (22) is formed over the barrier layer (21). A first CMP process is used to polish the copper (22) to expose portions of the barrier (21). A second CMP process which is different from the first CMP process is then used to polish exposed portions of the layer (21) faster than the dielectric layer (20) or the copper layer (22). After this two-step CMP process, a copper interconnect having a tantalum-based barrier is formed across the integrated circuit substrate (12).
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: December 14, 1999
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, Rajeev Bajaj, Melissa Freeman, David K. Watts, Sanjit Das
  • Patent number: 5985755
    Abstract: A process of polishing two dissimilar conductive materials deposited on semiconductor device substrate optimizes the polishing of each of the conductive material independently, while utilizing the same polishing equipment for manufacturing efficiency. A tungsten layer (258) and a titanium layer (256) of a semiconductor device substrate (250) are polished using one polisher (10) but two different slurry formulations. The two slurries can be dispensed sequentially onto the same polishing platen (132) from two different source containers (111 and 112), wherein the first slurry is dispensed until the tungsten is removed and then the slurry dispense is switched to the second slurry for removal of the titanium. In a preferred embodiment, the first slurry composition is a ferric nitrate slurry while the second slurry composition is an oxalic acid slurry.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: November 16, 1999
    Inventors: Rajeev Bajaj, Janos Farkas, Sung C. Kim, Jaime Saravia
  • Patent number: 5935871
    Abstract: A process has been developed for a post-chemical mechanical polishing cleaning/passivting step to remove slurry particles (52) and form a passivating film (64) from a portion of an interconnect material within a conductive layer (42) without attacking the interconnecting material. In one particular embodiment, a solution having a pH greater than the isoelectric point of alumina particles is exposed to the surface of an interconnect material of a conductive layer (42) to passivate a portion of the interconnect material while changing the charge of the slurry particles (52) such that they are repelled away from the surface of the substrate and removed by the cleaning solution, or other cleaning processes.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, David Watts, Melissa Freeman
  • Patent number: 5928962
    Abstract: Physical properties of alumina particles in a chemical-mechanical polishing slurry delivery loop (28) are measured using a titration technique (44). Examples of the physical properties include crystallographic phase, surface charge, and surface charge density. The physical properties are correlated to a polishing rate (46). Specification limits are generated using the correlated data (482 and 486). The specification limits are used to determine if no adjustments are required to the polishing parameters (484), if adjustments are required to polishing parameters (488) or if the slurry requires replacement (489). This process can be automated and integrated into a conventional chemical-mechanical polishing processing system (20).
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: July 27, 1999
    Assignee: Motorola, Inc.
    Inventors: Janos Farkas, Sanjit K. Das, George R. Meyer