Patents by Inventor Jörg Franke

Jörg Franke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180031643
    Abstract: A measuring system having a magnetic device for generating a magnetic field and at least one magnetic field sensor for detecting a flux density of the magnetic field, at least in a first spatial direction. The magnetic device has a top side facing the magnetic field sensor, the magnetic field sensor is spaced apart from the top side of the magnetic device, the magnetic device has a main magnet, having two poles, with a main magnetizing direction for generating a main magnetic field and at least one secondary magnet, having two poles, with a secondary magnetization direction for generating a secondary magnetic field, the main magnet has larger dimensions than the at least one secondary magnet, the magnetic field is formed by superposition of the main magnetic field and the secondary magnetic field, the secondary magnetic field at least partially compensates the main magnetic field in the first spatial direction.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 1, 2018
    Applicant: TDK - Micronas GmbH
    Inventors: Timo KAUFMANN, Joerg FRANKE
  • Patent number: 9880024
    Abstract: A measurement device for determining an angular position, having a magnet device and a sensor device that are rotatable relative to one another. The magnet device has a first north pole face of a first magnetic north pole and a first south pole face of a first magnetic south pole. The magnet device has a second north pole face of a second magnetic north pole and a second south pole face of a second magnetic south pole. The sensor device is located in a region between the first north pole face and the first south pole face and between the second north pole face and the second south pole face. The sensor device has a first magnetic field sensor and a second magnetic field sensor. The first magnetic field sensor and the second magnetic field sensor are spaced apart from one another for ascertaining a magnetic field difference.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: January 30, 2018
    Assignee: TDK-Micronas GmbH
    Inventors: Timo Kaufmann, Joerg Franke
  • Publication number: 20180018372
    Abstract: Technologies are described for facilitating query execution. A data network is received. The data network includes a plurality of nodes. Each of the nodes is associated with a portion of stored data. User input is received defining at least one semantic tag. User input is received associating the at least one semantic tag with at least one of the plurality of nodes. The association between the at least one sematic tag and the at least one of the plurality of nodes is stored.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 18, 2018
    Applicant: SAP SE
    Inventor: Jörg Franke
  • Publication number: 20170320233
    Abstract: A process for producing a molded insulating part, a molded insulating part and a casting tool for the production of an inorganic pulp composed of water, glass fibers and/or mineral fibers and sheet silicate, introduction of the pulp into a cavity of a casting tool whose wall is at least partially water-permeable, which cavity has on at least one side the negative shape of the molded insulating part to be produced, removal of the aqueous fraction present in the pulp, opening of the casting tool and subsequent taking-out of the molded insulating part produced. The pulp produced using water for producing the molded insulating part comprised a glass fiber/sheet silicate mixture or mineral fiber/sheet silicate mixture has a proportion of exclusively synthetic sheet silicate (5) in the range from 0.5% to 2.5% and a proportion of glass fibers and/or mineral fibers (4) of from 0.3 to 1.5%.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 9, 2017
    Inventors: Joerg FRANKE, Diederik CUYLITS
  • Publication number: 20170254669
    Abstract: A position determining unit is provided that has a number of sensor units arranged at positions along a path, and a transducer. Each sensor unit has a carrier, a first and second supply voltage connection, a switching output, a measuring unit and a bias magnet comprising two poles. The measuring unit is arranged on the carrier and has at least one magnetic field sensor, wherein the switching output is switched into an On or Off-state as a function of a threshold value exceeding or falling short of a sensor signal. The first supply voltage connection of each sensor unit is connected to a supply voltage, wherein a first sensor unit is arranged at a beginning of the path and a last sensor unit is arranged at the end of the path. The second supply voltage connection of the first sensor unit is connected to a reference potential.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Applicant: TDK - Micronas GmbH
    Inventors: Joerg FRANKE, Klaus HEBERLE
  • Publication number: 20170254668
    Abstract: A position determining sensor unit having a number of sensors arranged at predetermined positions along a path, and a transducer. The transducer has a first end which is moveable at least along the entire path, and a length running parallel to the path. Each sensor has a first supply voltage connection, a second supply voltage connection and a switching output, and wherein the switching output is switched into an On-state or an Off-state as a function of the threshold value of a sensor signal being exceeded or undershot. The supply voltage connection of each sensor is connected to a supply voltage, and a first sensor is arranged at a beginning of the path and a last sensor is arranged at an end of the path so that the second supply voltage connection of the first sensor is connected to a reference potential and the first sensor has a power consumption.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Applicant: TDK - Micronas GmbH
    Inventors: Joerg FRANKE, Klaus HEBERLE
  • Publication number: 20170227578
    Abstract: A test matrix adapter device having a plurality of segments arranged in a plane, the respective segments have line-shaped and column-shaped frame sections, and the segments are connected to one another in a form-fitting manner by the frame sections. Semiconductor receiving devices are arranged within the segments, that each have a plurality of first contact surfaces that are spaced apart from one another. The semiconductor receiving device are form-fittingly connected by webs to the frame sections of an assigned segment. The semiconductor receiving device has a bottom side and a base region at least partially enclosed by a frame, and an outer side. The column-shaped frame sections have projections that have second contact surfaces that are connected by conductor tracks to the first contact surfaces. The semiconductor receiving device adapted to receive a packaged semiconductor component with terminal contacts and to connect the terminal contacts to the first contact surfaces.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 10, 2017
    Applicant: TDK-Micronas GmbH
    Inventors: Timo KAUFMANN, Klaus HEBERLE, Joerg FRANKE, Oliver BREITWIESER
  • Patent number: 9718224
    Abstract: An injection-molded circuit carrier is provided that has an outside and an underside and an inner base region and a frame. The frame has an inside and a cover surface, so that the inner base region is enclosed in the manner of a frame, and multiple printed conductors are provided, which are spaced a distance apart. The printed conductors are guided at least partially from the inside to the underside via the cover surface and via the outside so that at least two metal surfaces are formed on the underside, which are each electrically connected to a printed conductor and are spaced a distance apart. The metal surfaces are designed to be significantly wider than the printed conductors for the purpose of forming a capacitive sensor.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 1, 2017
    Assignee: TDK-Micronas GmbH
    Inventors: Joerg Franke, Timo Kaufmann, Oliver Breitwieser, Klaus Heberle
  • Patent number: 9645203
    Abstract: A magnetic field measuring device includes a first semiconductor body having a surface formed in a first x-y plane, the first semiconductor body having two magnetic field sensors, spaced a distance apart on the surface, and the magnetic field sensors each measuring one z component of a magnetic field. A first magnet has a planar main extension surface formed in a second x-y plane, the direction of magnetization changing from a north pole to a south pole along the main extension surface on a symmetry surface of the magnet. One of the two magnetic field sensors being disposed in the vicinity of the north pole and the other of the two magnetic field sensors being situated in the vicinity of the south pole, so that signals having opposite polarities with respect to each other are formed in a z component of the magnetic field.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: May 9, 2017
    Assignee: Micronas GmbH
    Inventors: Timo Kaufmann, Klaus Heberle, Joerg Franke, Oliver Breitwieser
  • Publication number: 20170102250
    Abstract: A magnetic field measuring device having a semiconductor body with a first surface running in an x-y plane, with a first and second magnetic field sensor disposed on the surface, and an axis of symmetry, which runs perpendicular to the first surface in the z-direction and to which the magnetic field sensors are positioned in a mirrored fashion, first and second magnets, which are spaced apart from one another and in each case have an axis and a polar surface running perpendicular to the axis and facing the semiconductor body. The magnetic polarity changes along the axes on a surface, whereby the axes run in the direction of the axis of symmetry, whereby the axis of symmetry runs between the axes of the magnets, whereby the surfaces of the magnets in each case are spaced apart in the z-direction to the first surface of the semiconductor body.
    Type: Application
    Filed: October 11, 2016
    Publication date: April 13, 2017
    Applicant: Micronas GmbH
    Inventor: Joerg FRANKE
  • Patent number: 9551764
    Abstract: A magnetic field measuring device having a first semiconductor body having a surface formed in a first x-y plane, the first semiconductor body having on the surface two magnetic field sensors which are spaced apart and arranged along a first connecting line, and wherein the magnetic field sensors respectively measure a z-component of a magnetic field, and the x-direction and the y-direction and the z-direction are each formed orthogonally to each other. A first magnet is provided with a planar main extension surface formed in a second x-y plane and with a symmetry surface formed in an x-z plane, wherein the direction of magnetization extends substantially or exactly parallel to the main extension surface and substantially or exactly parallel to the plane of symmetry. The first semiconductor body and the first magnet are rigidly fixed to each other.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: January 24, 2017
    Assignee: Micronas GmbH
    Inventor: Joerg Franke
  • Publication number: 20160363637
    Abstract: A magnetic field measuring device having a first semiconductor body having a surface formed in a first x-y plane, the first semiconductor body having on the surface two magnetic field sensors which are spaced apart and arranged along a first connecting line, and wherein the magnetic field sensors respectively measure a z-component of a magnetic field, and the x-direction and the y-direction and the z-direction are each formed orthogonally to each other. A first magnet is provided with a planar main extension surface formed in a second x-y plane and with a symmetry surface formed in an x-z plane, wherein the direction of magnetization extends substantially or exactly parallel to the main extension surface and substantially or exactly parallel to the plane of symmetry. The first semiconductor body and the first magnet are rigidly fixed to each other.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Applicant: Micronas GmbH
    Inventor: Joerg FRANKE
  • Patent number: 9513343
    Abstract: A measuring system having a magnetic device for generating a magnetic field and having a magnetic field sensor for detecting a flux density of the magnetic field at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device has at least two main poles for generating a main magnetic field and at least two secondary poles for generating a secondary magnetic field. The magnetic field in the magnetic field sensor is formed by superposition of the main magnetic field and the secondary magnetic field. The magnetic field sensor is designed to measure the flux density of the superposition in the first spatial direction, and, in the magnetic field sensor, the secondary magnetic field compensates at least partially the main magnetic field in the first spatial direction.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: December 6, 2016
    Assignee: Micronas GmbH
    Inventors: Klaus Heberle, Joerg Franke, Oliver Breitwieser, Timo Kaufmann
  • Patent number: 9442169
    Abstract: A measuring system, having a magnetic device for generating a magnetic field and having a magnetic field sensor with a sensor surface for detecting a flux density of the magnetic field penetrating the sensor surface at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device can have at least one permanent magnet and a flux concentrator made of a ferromagnetic material. The permanent magnet has at least two pole surfaces and an outer surface. The flux concentrator can have a smaller dimensions than the outer surface of the permanent magnet. The flux concentrator can be positioned within the outer surface of the permanent magnet and the flux concentrator and the permanent magnet can have a magnetic force closure.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: September 13, 2016
    Assignee: Micronas GmbH
    Inventors: Klaus Heberle, Joerg Franke, Oliver Breitwieser, Timo Kaufmann
  • Publication number: 20160204055
    Abstract: An IC package having a semiconductor body that includes a monolithically integrated circuit and at least two metallic contact surfaces. The integrated circuit being connected to the two electrical contact surfaces via printed conductors, and being disposed on a carrier substrate and connected to the carrier substrate in a force-fitting manner. The carrier substrate including at least two terminal contacts that are connected to the two contact surfaces. The semiconductor body and the carrier substrate being covered by a casting compound forming one part of the IC package. A section of each of the two terminal contacts penetrating the IC package. The two terminal contacts being disposed on the carrier substrate, and each terminal contact and the carrier substrate disposed beneath the particular terminal contacts having a hole-like formation. The particular hole-like formation being designed as a through-connection for providing an electrical connection to another electrical component.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 14, 2016
    Applicant: Micronas GmbH
    Inventors: Klaus HEBERLE, Joerg FRANKE, Thomas LENEKE
  • Patent number: 9348003
    Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor, the second magnetic field sensor, and the third magnetic field sensor are connected. The evaluation circuit is configured to determine the position of the encoder based on a first measurement signal of the first magnetic field sensor and a second measurement signal of the second magnetic field sensor and a third measurement signal of the third magnetic field sensor.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 24, 2016
    Assignee: Micronas GmbH
    Inventors: Joachim Ritter, Joerg Franke
  • Patent number: 9341463
    Abstract: A measuring system having a first magnetic field sensor, an encoder, and an evaluation circuit. The first magnetic field sensor and the second magnetic field sensor and the third magnetic field sensor are connected to the encoder. The evaluation circuit has a logic, which is set up to determine the position of the encoder based on a first measurement signal of a first magnetic field sensor and a second measurement signal of a second magnetic field sensor and a third measurement signal of a third magnetic field sensor.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 17, 2016
    Assignee: Micronas GmbH
    Inventors: Joachim Ritter, Joerg Franke
  • Patent number: 9283011
    Abstract: The invention relates to an implant in the form of a bone-connecting device with an implant carrier, having at least two structure carriers for stimulating bone growth, the structure carriers can move relative to one another so that, due to a loading of the implant, a relative movement of the structure carriers occurs, the structure carriers furthermore contain structure elements that are arranged so that they define a plurality of partially open intermediate spaces, wherein a volume defined by these intermediate spaces and an immediate environment is deformed by the implant load, and a strain in the intermediate spaces and its immediate environment resulting from the deformation lies in the physiological range for bone growth.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 15, 2016
    Assignee: ACES INGENIEURGESELLSCHAFT MBH
    Inventors: Frank Heuer, Frank Trautwein, Jörg Franke, Michael Putzier, Ralph Kothe, Guy Matgé, Ulf Liljenqvist
  • Patent number: 9279702
    Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor and the second magnetic field sensor are connected. The evaluation circuit generates a first signal and a second measurement signal. The encoder generates a second magnetic field change with a second periodicity. The evaluation circuit generates a second signal with the second periodicity from the first measurement signal of the first magnetic field sensor and the second measurement signal of the second magnetic field sensor according to an absolute value function.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: March 8, 2016
    Assignee: Micronas GmbH
    Inventors: Joachim Ritter, Joerg Franke
  • Publication number: 20160061634
    Abstract: An injection-molded circuit carrier is provided that has an outside and an underside and an inner base region and a frame. The frame has an inside and a cover surface, so that the inner base region is enclosed in the manner of a frame, and multiple printed conductors are provided, which are spaced a distance apart. The printed conductors are guided at least partially from the inside to the underside via the cover surface and via the outside so that at least two metal surfaces are formed on the underside, which are each electrically connected to a printed conductor and are spaced a distance apart. The metal surfaces are designed to be significantly wider than the printed conductors for the purpose of forming a capacitive sensor.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 3, 2016
    Applicant: MICRONAS GMBH
    Inventors: Joerg FRANKE, Timo KAUFMANN, Oliver BREITWIESER, Klaus HEBERLE