Patents by Inventor Jae-Hoon Jang

Jae-Hoon Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090233405
    Abstract: Methods of forming a NAND-type nonvolatile memory device include: forming first common drains and first common sources alternatively in an active region which is defined in a semiconductor substrate and extends one direction, forming a first insulating layer covering an entire surface of the semiconductor substrate, patterning the first insulating layer to form seed contact holes which are arranged at regular distance and expose the active region, forming a seed contact structure filling each of the seed contact holes and a semiconductor layer disposed on the first insulating layer and contacting the seed contact structures, patterning the semiconductor layer to form a semiconductor pattern which extends in the one direction and is disposed over the active region, forming second common drains and second common sources disposed alternatively in the semiconductor pattern in the one direction, forming a second insulating layer covering an entire surface of the semiconductor substrate, forming a source line patte
    Type: Application
    Filed: May 29, 2009
    Publication date: September 17, 2009
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Patent number: 7589375
    Abstract: A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Jong-Hyuk Kim, Young-Seop Rah, Han-Byung Park
  • Patent number: 7554140
    Abstract: Provided is a NAND-type nonvolatile memory device and method of forming the same. In the method, a plurality of cell layers are stacked on a semiconductor substrate. Seed contact holes for forming a semiconductor pattern included in a stacked cell are formed at regular distance. At this time, the seed contact holes are arranged such that a bit line plug or a source line pattern is disposed at a center between one pair of seed contact holes adjacent to each other.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: June 30, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Patent number: 7521715
    Abstract: A static random-access memory (SRAM) device may include a bulk MOS transistor on a semiconductor substrate having a source/drain region therein, an insulating layer on the bulk MOS transistor, and a thin-film transistor having a source/drain region therein on the insulating layer above the bulk MOS transistor. The device may further include a multi-layer plug between the bulk MOS transistor and the thin-film transistor. The multi-layer plug may include a semiconductor plug directly on the source/drain region of the bulk MOS transistor and extending through at least a portion of the insulating layer, and a metal plug directly on the source/drain region of the thin-film transistor and the semiconductor plug and extending through at least a portion of the insulating layer. Related methods are also discussed.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Kun-Ho Kwak, Byung-Jun Hwang
  • Publication number: 20090097214
    Abstract: Provided is a method of manufacturing a device-embedded circuit board. The method includes: preparing a first substrate with a first pattern portion comprising a conductive material; coupling, for example, an electronic chip to the first substrate; preparing a second substrate with a first through hole corresponding to a part of the first pattern portion, a housing portion for housing the electronic chip, and a first connection portion comprising a conductive material formed in the first through hole; preparing a third substrate with a second through hole corresponding to the first through hole and a second connection portion comprising a conductive material formed in the second through hole; aligning and coupling the first, second and third substrates so that the first pattern portion, the first connection portion and the second connection portion are electrically connected.
    Type: Application
    Filed: May 14, 2008
    Publication date: April 16, 2009
    Applicant: Samsung Techwin Co., Ltd
    Inventors: Jin-woo Lee, Jae-hoon Jang
  • Patent number: 7511297
    Abstract: A phase change memory device and a method of fabricating the same are disclosed. The phase change memory device includes a first conductor pattern having a first conductivity type and a sidewall. A second conductor pattern is connected to the sidewall of the first conductor pattern to form a diode. A phase change layer is electrically connected to the second conductor pattern and a top electrode is connected to the phase change layer.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Ki-Nam Kim, Soon-Moon Jung
  • Patent number: 7479673
    Abstract: Semiconductor integrated circuits that include thin film transistors (TFTs) and methods of fabricating such semiconductor integrated circuits are provided. The semiconductor integrated circuits may include a bulk transistor formed at a semiconductor substrate and a first interlayer insulating layer on the bulk transistor. A lower TFT may be on the first interlayer insulating layer, and a second interlayer insulating layer may be on the lower TFT. An upper TFT may be on the second interlayer insulating layer, and a third interlayer insulating layer may be on the upper TFT. A first impurity region of the bulk transistor, a first impurity region of the lower TFT, and a first impurity region of the upper TFT may be electrically connected to one another through a node plug that penetrates the first, second and third interlayer insulating layers.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: January 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Kun-Ho Kwak, Byung-Jun Hwang
  • Publication number: 20080272434
    Abstract: A non-volatile memory device and a method of manufacturing the same are disclosed. In the non-volatile memory device, first gate structures and first impurity diffusion regions are formed on a substrate. A first insulating interlayer is formed on the substrate. A semiconductor layer including second gate structures and second impurity diffusion regions is formed on the first insulating interlayer. A second insulating interlayer is formed on the semiconductor layer. A contact plug connecting the first impurity diffusion regions to the second impurity diffusion regions is formed. A common source line connected to the contact plug is formed on the second insulating interlayer. The common source line connected to the first and second impurity diffusion regions is formed over a top semiconductor layer.
    Type: Application
    Filed: October 22, 2007
    Publication date: November 6, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-Beom PARK, Ki-Nam KIM, Soon-Moon JUNG, Jae-Hoon JANG
  • Patent number: 7417286
    Abstract: Semiconductor integrated circuit devices having single crystalline thin film transistors and methods of fabricating the same are provided. The semiconductor integrated circuit devices include an interlayer insulating layer formed on a semiconductor substrate and a single crystalline semiconductor plug penetrating the interlayer insulating layer. A single crystalline semiconductor body pattern is provided on the interlayer insulating layer. The single crystalline semiconductor body pattern has an elevated region and contacts the single crystalline semiconductor plug. The method of forming the single crystalline semiconductor body pattern having the elevated region includes forming a sacrificial layer pattern covering the single crystalline semiconductor plug on the interlayer insulating layer. A capping layer is formed to cover the sacrificial layer pattern and the interlayer insulating layer, and the capping layer is patterned to form an opening which exposes a portion of the sacrificial layer pattern.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Jin Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Jong-Hyuk Kim, Kun-Ho Kwak, Hoon Lim
  • Publication number: 20080193024
    Abstract: An apparatus deblock filters in a digital moving picture processing system with a macro block having a predetermined number of pixel blocks. An external memory controller reads a current sub-block of a current macro block from entire image data stored in an external memory, and delivers image data of an internal pixel block constituting the current sub-block and an external pixel block to a filter-dedicated memory. The filter-dedicated memory stores the delivered image data. A filtering operator performs horizontal filtering on the current sub-block using the stored image data according to a predetermined order, and performs vertical filtering on the current sub-block according to a predetermined order when the horizontal filtering is completed. The external pixel block includes pixel blocks adjacent to a top and a left side among pixel blocks adjacent to the internal pixel block.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 14, 2008
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Suh-Ho Lee, Joo-Kwang Kim, Won-Seok Heo, Jae-Hoon Jang
  • Publication number: 20080185648
    Abstract: A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 7, 2008
    Inventors: Jae Hun Jeong, Kim-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Patent number: 7387919
    Abstract: In one embodiment, an intrinsic single crystalline semiconductor plug is formed to pass through a lower insulating layer using a selective epitaxial growth process employing a node impurity region as a seed layer, and a single crystalline semiconductor body pattern is formed on the lower insulating layer using the intrinsic single crystalline semiconductor plug as a seed layer. When the recessed single crystalline semiconductor plug is doped with impurities having the same conductivity type as the node impurity region, a peripheral impurity region is prevented from being counter-doped. As a result, it is possible to implement a high performance semiconductor device that requires a single crystalline thin film transistor as well as a node contact structure with ohmic contact.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 17, 2008
    Inventors: Kun-Ho Kwak, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Jong-Hyuk Kim
  • Publication number: 20080111121
    Abstract: A phase change memory device and a method of fabricating the same are disclosed. The phase change memory device includes a first conductor pattern having a first conductivity type and a sidewall. A second conductor pattern is connected to the sidewall of the first conductor pattern to form a diode. A phase change layer is electrically connected to the second conductor pattern and a top electrode is connected to the phase change layer.
    Type: Application
    Filed: September 14, 2007
    Publication date: May 15, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-Hoon JANG, Ki-Nam KIM, Soon-Moon JUNG
  • Publication number: 20080108213
    Abstract: A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
    Type: Application
    Filed: January 17, 2007
    Publication date: May 8, 2008
    Inventors: Young-Chul Jang, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Publication number: 20080087932
    Abstract: A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
    Type: Application
    Filed: January 17, 2007
    Publication date: April 17, 2008
    Inventors: Yang-Soo Son, Young-Seop Rah, Won-Seok Cho, Soon-Moon Jung, Jae-Hoon Jang, Young-Chul Jang
  • Publication number: 20080085582
    Abstract: Provided is a NAND-type nonvolatile memory device and method of forming the same. In the method, a plurality of cell layers are stacked on a semiconductor substrate. Seed contact holes for forming a semiconductor pattern included in a stacked cell are formed at regular distance. At this time, the seed contact holes are arranged such that a bit line plug or a source line pattern is disposed at a center between one pair of seed contact holes adjacent to each other.
    Type: Application
    Filed: January 10, 2007
    Publication date: April 10, 2008
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Publication number: 20080084729
    Abstract: A semiconductor memory device including a memory cell array, a first row decoder adjacent the memory cell array, and a second row decoder adjacent the memory cell array. A memory cell array may include first and second memory cell blocks on respective first and second semiconductor layers. The first memory cell block may include a first word line coupled to a first row of memory cells on the first semiconductor layer, the second memory cell block may include a second word line coupled to a second row of memory cells on the second semiconductor layer, and the first word line may be between the first and second semiconductor layers. The first row decoder may be configured to control the first word line, and the second row decoder may be configured to control the second word line. A first wiring may electrically connect the first row decoder and the first word line, and a second wiring may electrically connect the second row decoder and the second word line.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 10, 2008
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Young-Seop Rah, Jae-Hoon Jang, Jae-Hun Jeong, Jun-Beom Park
  • Publication number: 20080067573
    Abstract: A stacked memory includes at least two semiconductor layers each including a memory cell array. A transistor is formed in a peripheral circuit region of an uppermost semiconductor layer of the at least two semiconductor layers. The transistor is used to operate the memory cell array.
    Type: Application
    Filed: February 22, 2007
    Publication date: March 20, 2008
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Hoo-Sung Cho, Jong-Hyuk Kim
  • Publication number: 20080067554
    Abstract: A NAND flash memory device includes a plurality of stacked semiconductor layers, device isolation layer patterns disposed in predetermined regions of each of the plurality of semiconductor layers, the device isolation layers defining active regions, source and drain impurity regions in the active regions, a source line plug structure electrically connecting the source impurity regions, and a bit-line plug structure electrically connecting the drain impurity regions, wherein the source impurity regions are electrically connected to the semiconductor layers.
    Type: Application
    Filed: February 12, 2007
    Publication date: March 20, 2008
    Inventors: Jae-Hun Jeong, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Publication number: 20080067517
    Abstract: A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
    Type: Application
    Filed: January 19, 2007
    Publication date: March 20, 2008
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Yang-Soo Son, Min-Sung Song