Patents by Inventor Jae-Hoon Jang

Jae-Hoon Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100240209
    Abstract: Provided are semiconductor devices and methods of forming the same. The semiconductor devices include a substrate further including a hydrogen implantation layer and a gate structure formed on the hydrogen implantation layer to include a first insulating layer, a charge storage layer, a second insulating layer and a conductive layer.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Inventors: Jae-Hun Jeong, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Patent number: 7795651
    Abstract: A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hun Jeong, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Publication number: 20100195395
    Abstract: A non-volatile memory device having a vertical structure includes a NAND string having a vertical structure. The NAND string includes a plurality of memory cells, and at least one pair of first selection transistors arranged to be adjacent to a first end of the plurality of memory cells. A plurality of word lines are coupled to the plurality of memory cells of the NAND string. A first selection line is commonly connected to the at least one pair of first selection transistors of the NAND string.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 5, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jae-hun Jeong, Han-soo Kim, Won-seok Cho, Jae-hoon Jang, Sun-il Shim
  • Publication number: 20100120217
    Abstract: An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Young-Seop Rah, Han-Byung Park
  • Patent number: 7709323
    Abstract: Methods of forming a NAND-type nonvolatile memory device include: forming first common drains and first common sources alternatively in an active region which is defined in a semiconductor substrate and extends one direction, forming a first insulating layer covering an entire surface of the semiconductor substrate, patterning the first insulating layer to form seed contact holes which are arranged at regular distance and expose the active region, forming a seed contact structure filling each of the seed contact holes and a semiconductor layer disposed on the first insulating layer and contacting the seed contact structures, patterning the semiconductor layer to form a semiconductor pattern which extends in the one direction and is disposed over the active region, forming second common drains and second common sources disposed alternatively in the semiconductor pattern in the one direction, forming a second insulating layer covering an entire surface of the semiconductor substrate, forming a source line patte
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Patent number: 7683404
    Abstract: A stacked memory includes at least two semiconductor layers each including a memory cell array. A transistor is formed in a peripheral circuit region of an uppermost semiconductor layer of the at least two semiconductor layers. The transistor is used to operate the memory cell array.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Hoo-Sung Cho, Jong-Hyuk Kim
  • Patent number: 7671389
    Abstract: An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Young-Seop Rah, Han-Byung Park
  • Publication number: 20100046304
    Abstract: Provided is a non-volatile memory device including first and second, vertically stacked semiconductor substrates, a plurality of non-volatile memory cell transistors formed in a row on the first and second semiconductor substrates, and a plurality of word lines connected to gates of the plurality of non-volatile memory cell transistors. The plurality of non-volatile memory cell transistors are grouped into two or more memory cell blocks, such that a first voltage is applied to the first semiconductor substrate including a first memory cell block to be erased, and either (1) a second voltage less than the first voltage and greater than 0V is applied to the second semiconductor substrate not including the first memory cell block, or (2) the second semiconductor substrate not including the first memory cell block is allowed to electrically float.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 25, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-hun JEONG, Soon-moon JUNG, Han-soo KIM, Jae-hoon JANG
  • Publication number: 20100046294
    Abstract: A non-volatile memory device includes first and second strings memory cell transistors, related first and second word lines respectively connected to gates of the first string memory cell transistors, wherein respective first and second word lines are connected to commonly receive a bias voltage. The non-volatile memory device also includes dummy cell transistors connected to the first and second strings, and first and second dummy word lines configured to receive different bias voltages.
    Type: Application
    Filed: June 18, 2009
    Publication date: February 25, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jae-hun JEONG, Soon-moon JUNG, Han-soo KIM, Jae-hoon JANG
  • Publication number: 20100035386
    Abstract: A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
    Type: Application
    Filed: October 8, 2009
    Publication date: February 11, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Yang-Soo Son, Min-Sung Song
  • Publication number: 20100032762
    Abstract: A stack-type semiconductor device and a method of manufacturing the same are provided. The stack-type semiconductor device includes an insulation layer on a single-crystalline substrate, a contact plug penetrating the insulation layer to contact the single-crystalline substrate, an upper semiconductor pattern including an impurity region and a gate structure positioned between the impurity regions on the upper semiconductor pattern. An upper surface of the contact plug contacts a lower surface of the semiconductor pattern. An operation failure of the stack-type semiconductor device is reduced since the upper semiconductor pattern is electrically connected to the single-crystalline semiconductor substrate.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Inventors: Jun-Beom Park, Soon-Moon Jung, Han-Soo Kim, Jae-Hoon Jang, Jae-Hun Jeong, Jong-In Yun, Mi-So Hwang
  • Patent number: 7646664
    Abstract: A semiconductor memory device including a memory cell array, a first row decoder adjacent the memory cell array, and a second row decoder adjacent the memory cell array. A memory cell array may include first and second memory cell blocks on respective first and second semiconductor layers. The first memory cell block may include a first word line coupled to a first row of memory cells on the first semiconductor layer, the second memory cell block may include a second word line coupled to a second row of memory cells on the second semiconductor layer, and the first word line may be between the first and second semiconductor layers. The first row decoder may be configured to control the first word line, and the second row decoder may be configured to control the second word line. A first wiring may electrically connect the first row decoder and the first word line, and a second wiring may electrically connect the second row decoder and the second word line.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Young-Seop Rah, Jae-Hoon Jang, Jae-Hun Jeong, Jun-Beom Park
  • Publication number: 20100001337
    Abstract: A semiconductor memory device includes: sequentially stacked first and second semiconductor layers; at least one first memory transistor disposed on the first semiconductor layer; and at least one second memory transistor disposed on the second semiconductor layer, wherein a gate electrode of the first memory transistor has a broader width than that of the second memory transistor.
    Type: Application
    Filed: June 18, 2009
    Publication date: January 7, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Han-Soo Kim, Jae-Hoon Jang, Hoo-Sung Cho
  • Publication number: 20090315187
    Abstract: A semiconductor device includes a lower semiconductor layer with first conductive regions and including at least one dummy first conductive region, an upper semiconductor layer with second conductive regions on the lower semiconductor layer and including at least one dummy second conductive region, a penetration hole in the upper semiconductor layer and penetrating the dummy second conductive region and the upper semiconductor layer under the dummy second conductive region, a lower conductive line on the lower semiconductor layer and electrically connected to the first conductive regions, an upper conductive line on the upper semiconductor layer and electrically connected to the second conductive regions, and a first conductive plug in the penetration hole between the lower conductive line and the upper conductive line, the first conductive plug electrically connecting the lower and upper conductive lines and being spaced apart from sidewalls of the penetration hole.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 24, 2009
    Inventors: Hoo-Sung Cho, Han-Soo Kim, Jae-Hoon Jang
  • Patent number: 7601998
    Abstract: A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Yang-Soo Son, Min-Sung Song
  • Patent number: 7602028
    Abstract: A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yang-Soo Son, Young-Seop Rah, Won-Seok Cho, Soon-Moon Jung, Jae-Hoon Jang, Young-Chul Jang
  • Publication number: 20090251962
    Abstract: A driving method of a three-dimensional memory device having a plurality of layers is provided. One of the layers is selected. A well of the selected layer is biased with a first well voltage. A word line voltage is applied to a selected word line of the selected layer. A well of an unselected layer is biased with a second well voltage higher than the first well voltage.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 8, 2009
    Inventors: Jong-In Yun, Jae-Hoon Jang, Soon-Moon Jung, Han-Soo Kim, Jun-Beom Park, Jae-Hun Jeong
  • Publication number: 20090253257
    Abstract: A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
    Type: Application
    Filed: June 4, 2009
    Publication date: October 8, 2009
    Inventors: Young-Chul Jang, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Publication number: 20090233405
    Abstract: Methods of forming a NAND-type nonvolatile memory device include: forming first common drains and first common sources alternatively in an active region which is defined in a semiconductor substrate and extends one direction, forming a first insulating layer covering an entire surface of the semiconductor substrate, patterning the first insulating layer to form seed contact holes which are arranged at regular distance and expose the active region, forming a seed contact structure filling each of the seed contact holes and a semiconductor layer disposed on the first insulating layer and contacting the seed contact structures, patterning the semiconductor layer to form a semiconductor pattern which extends in the one direction and is disposed over the active region, forming second common drains and second common sources disposed alternatively in the semiconductor pattern in the one direction, forming a second insulating layer covering an entire surface of the semiconductor substrate, forming a source line patte
    Type: Application
    Filed: May 29, 2009
    Publication date: September 17, 2009
    Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
  • Patent number: 7589375
    Abstract: A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Jong-Hyuk Kim, Young-Seop Rah, Han-Byung Park